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Fig. 1. Rendering of a shop window featuring a combination of challenging-to-sample light transport paths with specular-diffuse-specular (“SDS“) inter-

reflection: the two golden normal-mapped pedestals are illuminated by spot lights and project intricate caustic patterns following a single reflection

from the metallic surface, while the transparent center pedestal generates caustics via double refraction. The glinty appearance of the shoes arises

due to specular microgeometry encoded in a high-frequency normal map. This image was rendered by an ordinary unidirectional path tracer using

our new specular manifold sampling strategy. The remaining noise is due to indirect lighting by caustics, which is not explicitly sampled by our technique.

The background image is “Hexactinellae” from Art Forms in Nature by Ernst Haeckel.

Scattering from specular surfaces produces complex optical effects that

are frequently encountered in realistic scenes: intricate caustics due to fo-

cused reflection, multiple refraction, and high-frequency glints from specular

microstructure. Yet, despite their importance and considerable research

to this end, sampling of light paths that cause these effects remains a

formidable challenge.

In this article, we propose a surprisingly simple and general sampling

strategy for specular light paths including the above examples, unifying

the previously disjoint areas of caustic and glint rendering into a single

framework. Given two path vertices, our algorithm stochastically finds a

specular subpath connecting the endpoints. In contrast to prior work, our
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method supports high-frequency normal- or displacement-mapped geome-

try, samples specular-diffuse-specular (“SDS”) paths, and is compatible with

standard Monte Carlo methods including unidirectional path tracing. Both

unbiased and biased variants of our approach can be constructed, the latter

often significantly reducing variance, which may be appealing in applied

settings (e.g. visual effects). We demonstrate our method on a range of chal-

lenging scenes and evaluate it against state-of-the-art methods for rendering

caustics and glints.
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1 INTRODUCTION

Efficient simulation of the physical process of light transport and

scattering constitutes one of the classic problems in the field of com-

puter graphics. Over the past decades, research on this challenging

problem has gravitated towards methods that perform Monte Carlo

integration over high-dimensional sets of light transport paths, fu-

eling the development of a toolbox of sophisticated path sampling

strategies that are now in widespread use. While Monte Carlo ren-

dering has been extremely successful in both industry and academia,

there are many settings where these methods are surprisingly brittle

and subject to catastrophically poor convergence.

One particularly problematic case are scenes containing specu-
lar paths, i.e., paths involving chains of interactions with smooth

metallic or refractive surfaces. Their constrained nature makes such

light paths difficult to find: at specular interfaces, light must satisfy

the law of reflection or Snell’s law, which drastically lowers the

probability of sampling a valid configuration connecting the camera

to a light source. Caustics or glittery surfaces that exhibit random

patterns of highlights due to specular micro-geometry are visually

striking examples of such specular paths, though they are often

much more subtle while still having a negative effect on overall con-

vergence. The large family of specular-diffuse-specular (“SDS”) paths
with only a single diffuse vertex surrounded by specular chains sim-

ply cannot be found at all and is normally absent in rendered images.

The caustics seen through the shop window in Fig. 1 are an example

of this configuration—they are only visible thanks to the proposed

sampling strategy. The glints on the shoes are even more challeng-

ing and involve only specular vertices: a point spotlight, perfectly
specular microstructure, the glass window, and a pinhole camera.

Faced with these challenges, research in the last two decades has

produced a large set of tailored methods that are each able to render

specific types of specular paths. However, no existingmethod tackles

the general case, and every approach brings along an intrinsic set

of limitations: for instance, bidirectional sampling [Lafortune and

Willems 1993; Veach and Guibas 1995a] from cameras and light

sources often improves convergence, but does not help with glints

or SDS paths, and tends to be brittle when the two partial paths only

rarely find each other
1
. Biased methods [Jensen 1996; Hachisuka and

Jensen 2009] that relax the problem via spatial smoothing support

SDS paths and greatly improve convergence but do not handle

glints and introduce blur that is often undesirable. Specialized glint

rendering methods for normal-mapped surfaces [Yan et al. 2014,

2016] are excellent at their task but do not help with other types

of specular paths and require many gigabytes of memory to hold

precomputed data structures. Finally, path sampling techniques

based on specular manifolds [Jakob and Marschner 2012; Hanika

et al. 2015a] are very powerful in theory but tend to be extremely

fragile in practice, particularly when the scene geometry features

high-frequency detail.

In this paper, we present a remarkably simple technique for sam-

pling specular chains connecting two specified shading points—

including glints and SDS paths—in an unbiased manner. Our ap-

proach builds on the theory of specular manifolds but significantly

improves its practicality in formerly challenging cases, e.g. when

1
e.g., in the common setting when the camera is inside a building that is lit from outside.

working with high-frequency displaced or normal-mapped geome-

try. Concretely, our contributions are:

(1) A unified manifold sampling strategy for rendering reflective

and refractive caustics.

(2) A specialized variant for rendering glints, which reduces

memory usage hundred-fold compared to prior work.

(3) A biased variant of the method with reduced variance.

(4) A two-pass sampling strategy for normal-mapped surfaces.

(5) Changes to the specular manifold constraints of Jakob and

Marschner [2012] that improve robustness and convergence.

The main limitation of our sampling technique is that variance

increases significantly for longer specular chains, hence our experi-

ments mainly focus on short chains with 1 or 2 vertices. That said,

our approach is highly extensible, and we believe that future work

could address this limitation.

We show how our method can be deployed in a unidirectional

path tracer and compare its performance to prior work. We will

release our implementation as open source to ensure reproducibility.

2 PRIOR WORK

Path tracing, proposed in Kajiya’s seminal 1986 paper, is the founda-

tion of an extensive body of work on unbiased Monte Carlo render-

ing including later bidirectional extensions [Lafortune and Willems

1993; Veach and Guibas 1995a] and specialized guiding strategies

that exploit past observations to improve the quality of generated

samples [Vorba et al. 2014; Müller et al. 2017; Simon et al. 2018].

However, even state-of-the-art methods with both bidirectional sam-

ple generation and guiding fail to find SDS paths and produce high

variance when the scene contains objects with glinty microstructure.

Methods based on photon maps [Jensen 1996] are able to resolve

the issues with SDS paths by introducing spatial blur that relaxes the

original problem. These methods emit photons from light sources

in a first pass that are stored on surfaces and queried in a secondary

density estimation phase. Later work has shown how very large

number of photons can be sampled progressively [Hachisuka and

Jensen 2009], and how photon lookups can be incorporated in bidi-

rectional rendering algorithms [Georgiev et al. 2012; Hachisuka

et al. 2012] combining many different strategies using multiple im-

portance sampling [Veach and Guibas 1995b]. While photon maps

are an excellent choice for certain path classes, they can introduce

objectionable blur, and they do not handle important cases including

caustics on non-diffuse surfaces or glints. The path space can also

be selectively mollified to introduce bias only for path types that

were otherwise impossible to sample [Kaplanyan and Dachsbacher

2013]. In contrast, our work focuses on general path sampling in

the original non-relaxed problem.

Fermat’s principle states that specular paths are extremal, i.e.,
they locally maximize or minimize the time that light requires to

travel from one end to the other. One way of generating such paths

thus entails optimizing path length or solving an equivalent root

finding problem. This idea was pioneered by Mitchell and Hanrahan

[1992], who render caustics from implicitly defined curved reflectors

using interval arithmetic and Newton-Raphson iteration to find 1-

bounce specular reflections connecting a given pair of vertices. We

also experimented with a similar approach in an early stage of this

ACM Trans. Graph., Vol. 39, No. 4, Article 149. Publication date: July 2020.
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work and found that the highly conservative nature of interval arith-

metic often causes intervals to be too large to allow for systematic

pruning of the solution space. Another approach involves precom-

puted hierarchical data structures that partition triangle meshes

and bound the positions and normals of each subtree. Building on

such a position-normal hierarchy, Walter et al. [2009] propose an

efficient pruning strategy for specular chains with a single specular

refraction (e.g. underwater caustics).

Specialized methods for glint rendering implement an effective

BRDF that averages the behavior of a high-frequency specular sur-

face over a given surface region. The methods of Yan et al. [2014,

2016] do so by constructing position-normal hierarchies in texture

space to solve an approximate form of this problem for normal-

mapped surfaces. These tree data structures tend to become ex-

tremely large, requiring tens of gigabytes of memory in our ex-

periments. Procedural glints [Jakob et al. 2014; Kuznetsov et al.

2019; Wang et al. 2019] can be rendered with a much lower storage

footprint, but are of course significantly less flexible. Recent work

on glint rendering has focused on incorporating wave-optical ef-

fects [Yan et al. 2018], and directional bases for filtering product

integrals involving glints [Gamboa et al. 2018].

We note that the previously discussed caustic and glint rendering

techniques of Mitchell and Hanrahan [1992], Walter et al. [2009],

and Yan et al. [2014, 2016] find all possible solutions within their

supported path classes and are thus fully deterministic. This yields

pixel-perfect renderings when the scene contains no other sources

of variance, but this is rarely the case in practice. In contrast, our

method stochastically samples individual solutions; the added vari-

ance due to this random decision can then be reduced along with

complementary sources of variance (environment mapping, indirect

illumination, and so on).

Our algorithm is closely related to Jakob and Marschner’s mani-
fold exploration (ME) method [2012], which is a Markov chain Monte

Carlo (MCMC) perturbation strategy that analyzes the differential

geometry of the manifold of valid specular paths to make proposals

in the framework of Metropolis Light Transport [Veach 1998]. The

natural constraint representation [Kaplanyan et al. 2014; Hanika

et al. 2015b] significantly expands on this idea in the more general

case of multiple glossy interactions. One downside of these pertur-

bation strategies is that they can only make very small changes to a

specular path; exploration of the larger space relies on many repeti-

tions of this basic operation. When the geometry is characterized

by high-frequency detail, the manifold of valid specular paths tends

to become very complex, and simple local steps are insufficient for

global exploration.

The manifold next-event estimation (MNEE) technique of Hanika

et al. [2015a] applies the ME equation-solving iteration in a pure

Monte Carlo context. Starting with an incorrect initial specular

path, MNEE iteratively attempts to walk towards a valid solution

via projection and tangential steps on the specular manifold. Due

to the simple deterministic initialization, it can find at most a single

solution, which works well on smooth geometry (e.g. spheres) but

breaks down in more challenging cases. MNEE was later adapted as

a connection strategy for bidirectional path tracing [Speierer et al.

2018]. Other recent work has explored the potential of next-event

: fixed position : specular path

Fig. 2. Example specular path between the sensor and an emitter position.

estimation strategies that sample multiple vertices in the context of

volume rendering [Koerner et al. 2016; Weber et al. 2017].

The proposed method, named specular manifold sampling (SMS),

is a generalization of the MNEE approach: using a stochastic ini-

tialization and an unbiased sampling weight estimator, we are able

to find solutions on complex geometry where manifold-based tech-

niques were previously inapplicable. We also propose a simple

2-stage stochastic initialization for normal-mapped surfaces and

demonstrate that SMS straightforwardly generalizes to the related

problem of glint rendering.

We provide a brief review of path-space manifolds [Jakob 2013]

that are the foundation of our work before delving into specifics.

3 BACKGROUND

Consider a light transport path
2 x̄ = x0, . . . , x𝑛 containing a chain

of specular vertices between two non-specular endpoints x1 and

x𝑛 . For example, x1 could be a shading point on a surface, and x𝑛 a

position on a light source (Fig. 2). Although this path is an element

of a large and high-dimensional path space, it effectively lies on

a much lower-dimensional subspace, since each specular vertex

imposes physical constraints that collapse some dimensions of the

ambient space: when refraction takes place at a vertex, it must for

example satisfy Snell’s law, removing all of its continuous degrees

of freedom.

Jakob and Marschner [2012] characterize these constraints via

a function c𝑖 associated with each vertex x𝑖 . It projects Walter

et al.’s [2007] generalized half-vector h(x𝑖 ,𝝎i,𝝎o) onto the local

tangent space:

c𝑖 (x𝑖−1, x𝑖 , x𝑖+1) = T(x𝑖 )𝑇 h(x𝑖 ,−−−−−→x𝑖x𝑖−1,
−−−−→x𝑖x𝑖+1) . (1)

Here, T(x𝑖 ) is a 3 × 2 matrix of tangent vectors, and

−→
ab denotes a

normalized vector pointing from a to b. The constraint function

takes on the value zero when the vertices x𝑖−1, x𝑖 , and x𝑖+1 are cor-

rectly positioned so that the relevant physical laws hold, subsuming

both cases of specular reflection and refraction. A valid specular

path can then be summarized as a root of the combined function

C(x̄) = [c2, . . . , c𝑛−1]𝑇 that stacks all specular path constraints.

The function is normally parameterized via the UV coordinates uv𝑖
of specular vertices, in which case its inputs and outputs have a

matching number of dimensions.

The main application of this formulation is that it enables the

use of numerical root finding techniques to solve for paths that lie

2
In this article, overlined quantities like x̄ characterize an entire light path, while

non-overlined quantities refer to other entities (e.g., individual vertices).
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on the specular manifold. In particular, solutions to the equation

C(uv) = 0 can be found using multivariate Newton iteration:

uv𝑖+1 = uv𝑖 − (∇C(uv𝑖 ))−1 · C(uv𝑖 ) . (2)

Here, uv𝑖 refers to the UV coordinates of all specular vertices at

iteration 𝑖 . The Jacobian ∇C in (2) is a block tridiagonal matrix

consisting of 2 × 2 blocks and can be inverted cheaply.

In practice, consistent UV parameterizations of scene geometry

are often not available, and Jakob and Marschner instead propose to

rely on local tangential parameterizations (e.g. of individual trian-

gles). In this case, the Newton step (2) will generally produce vertices

that are detached from the scene geometry, and an additional ray

tracing-based reprojection step is required after each iteration. This

predictor-corrector scheme, named manifold walk, has quadratic
convergence when uv0 is sufficiently close to a solution.

3

We briefly note that another important role of the Jacobian ∇C is

the computation of the generalized geometry term𝐺 (x1 ↔ · · · ↔ x𝑛)
relating differential solid angles at one end of the chain (x1) to dif-

ferential surface area at the other end (x𝑛). This term takes the role

of the traditional geometry term [Veach 1998] when a path contains

specular vertices.

: specular path : seed path

Fig. 3. Finding a specular refraction through a spherical interface using

manifold next-event estimation. Note how the seed path is usually very close

to the valid specular path in this scenario, which means that the manifold

walk has a high success probability of converging to the desired solution.

3.1 Manifold next-event estimation

Manifold walks can also be applied in regular Monte Carlo meth-

ods, as illustrated by Hanika et al.’s [2015a] manifold next-event
estimation (MNEE) method. Their approach is specific to refractive

chains and initializes the Newton iteration with a tentative path

x0 corresponding to a straight-line connection (Fig. 3 and Alg. 1).

Repeated evaluation of Eq. (2) along with reprojection then leads

to two possible outcomes: either the manifold walk diverges, or it

converges to a valid specular path. The probability of finding a valid

path in this way is generally much higher than in an ordinary path

tracer, reducing the variance of rendered images.

Prior to MNEE, the fundamental problem impeding the integra-

tion of manifold walks into pure Monte Carlo methods had been

the determination of the probability 𝑝 (x̄∗) of finding a solution x̄∗

given an initial state x̄0 chosen with density 𝑝 (x̄0). This probability
3
This is clearly the case in the original application of Jakob and Marschner [2012]

whose MCMC perturbation strategy takes small steps on the specular manifold.

ALGORITHM1: Manifold next-event estimation [Hanika et al. 2015a]

Input: Shading point x1 and emitter position x𝑛 with density 𝑝 (x𝑛)
Output: Estimate of radiance traveling from x𝑛 to x1

1 s = (x2, . . . , x𝑛−1) ← collect specular vertices along ray x1 → x𝑛
2 s∗ = (x∗

2
, . . . , x∗

𝑛−1
) ← manifold_walk(x1, s, x𝑛)

3 return 𝑓𝑠 (s∗) ·𝐺 (x∗
1
↔ · · · ↔ x∗𝑛) · 𝐿𝑒 (x𝑛) /𝑝 (x𝑛)

is given by a marginalization over the path space P [Hanika et al.

2015a]:

𝑝 (x̄∗) =
∫
P
𝑝 (x̄∗ | x̄0) 𝑝 (x̄0) dx̄0 . (3)

The computation of this expression is mathematically daunting

because 𝑝 (x̄∗ | x̄0) encapsulates the behavior of an unpredictable

equation-solving iteration. MNEE sidesteps this problem using two

clever tricks: First, it always uses the same initialization, turning

𝑝 (x̄0) into a Dirac delta function. Second, it relies on Multiple Im-

portance Sampling (MIS) [Veach and Guibas 1995a] to fall back to

standard path tracing when the manifold walk fails. In this case, the

remaining term 𝑝 (x̄∗ | x̄0) cancels out in the estimator.

However, MNEE also suffers from several fundamental limitations

that we intend to address in this article: Because the method can find

at most a single specular path, it does little to reduce variance when

there are multiple solutions. Most of the examples in the original

paper [Hanika et al. 2015a] are extremely simple shapes such as

spheres
4
or cylinders, where a single solution indeed suffices to

render most specular paths. However, this is clearly no longer the

case when the specular geometry is more complex. Also, while the

straight-line initialization x̄0 proposed by Hanika et al. works well

for refractive caustics, it is unclear how this approach could be

generalized to the reflection case. Finally, MNEE does not support

paths that give rise to specular glints.

4 METHOD

We now turn to the proposed method named specular manifold
sampling (SMS), initially focusing on a simple unbiased algorithm

that generalizes to cases where multiple specular paths connect two

given endpoints. We then propose several extensions: the first re-

duces variance at the cost of nonzero bias, the second replaces Jakob

and Marschner’s specular manifold constraints with improved vari-

ants, the third samples paths in two stages to improve performance

on normal-mapped surfaces, and the last streamlines the algorithm

for glint rendering. Many of these extensions are modular and can

be combined as desired. Figure 6 shows a preview of several com-

binations applied to the problem of rendering refractive caustics,

comparing our results to MNEE and a brute-force reference.

4.1 Finding all solutions

We initially restrict ourselves to specular chainswith a single smooth

reflection or refraction. Our technique however extends to chains

with surface roughness and multiple interactions analogously to

Hanika et al. [2015a]; see Section 5.2. In this restricted setting, there

4
Rendering of caustics in 3D models of human eyes constitutes an important use case

of MNEE in the entertainment industry [Chiang and Burley 2018].
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3210

(a) (b)

(c) (d)

Fig. 4. (a): Multiple solutions of the specular path constraint form a super-

position of caustics in the Ring scene. (b): Color map showing the number of

solutions at each shading point. (c): The three solution paths at a particular

point. (d): The basins of convergence (in primary sample space) correspond-

ing to those solution paths. All manifold walks started at a point (black dot)

inside a region converge to the associated solution (colored dot).

is a discrete and finite set
5
of solutions connecting two given end-

points. Our approach to finding them is simple: whereas MNEE

performs manifold walks using a fixed initialization, SMS randomly

samples the initial guess from a probability distribution 𝑝 (x̄0). New-
ton’s method exhibits quadratic convergence when the starting

point is sufficiently close to a root, hence all solutions will be found

with a nonzero probability—however, the probability of successful

convergence is unknown.

There is a great degree of latitude in the choice of an initial guess:

we could uniformly generate positions on specular surfaces, or

sample the BSDF of the preceding vertex x1 and find starting points

via ray tracing. Regardless of what approach is used, we assume that

the implementation of this sampling strategy takes two uniformly

distributed random numbers 𝝃 = (b1, b2) ∈ [0, 1)2 C U as input

and warps them to the desired distribution. Our objective now is to

generate an initial sample 𝝃 that is close enough to the solution, so

that the Newton iteration (2) will take us there.

When inspecting the convergence behavior of these manifold

walks on the primary sample space U, we generally observe mul-

tiple basins of convergence B𝑘 ⊆ U, each containing a point 𝝃 (𝑘 )

identified with a corresponding solution vertex x2
(𝑘 )
. Figure 4 il-

lustrates the situation on a simple scene with a cardioid caustic.

Newton’s method is known to produce convergence basins that

5
We note that cases with a continuous 1D subspace of solutions can be constructed, for

instance when x1 and x3 lie at the center-line of a perfect cylindrical mirror. This is of

no relevance for rendering natural scenes, since an arbitrarily small perturbation of the

surface geometry would break the symmetries that are needed to create a 1D solution

subspace. We ignore this corner case similarly to prior work [Walter et al. 2009].

(a) (b)

Fig. 5. (a): Newton fractal 𝑧3 − 1 = 0. (b): Complex convergence basins with

5 unique solutions encountered in one of our scenes.

potentially have an extremely complex geometric structure [Hub-

bard et al. 2001] and can even be fractal. For example, Fig. 5a shows

convergence towards three different solutions of a simple polyno-

mial equation on the set of complex numbers and Fig. 5b shows a

particularly challenging convergence plot that we encountered after

applying a normal map to the Ring scene shown in Fig. 4. Recall

that our goal is to use these solutions in a Monte Carlo estimator,

where an algorithm that merely finds solutions is insufficient—we

must also know the discrete probability 𝑝𝑘 of finding a particular

path vertex x2
(𝑘 )
. An unbiased estimator is then given by a standard

MC ratio 𝑓 (x̄)/𝑝 (x̄), where 𝑝 (x̄) in the denominator contains 𝑝𝑘 .

Since the samples 𝝃 are uniformly distributed, this probability is

simply the area of the associated convergence basin onU:

𝑝𝑘 =

∫
U
1B𝑘 (𝝃 ) d𝝃 . (4)

However, exact evaluation or precomputation of this integral is

clearly infeasible: as discussed, B𝑘 can have an extremely complex

shape which also depends on the position of the path endpoints. On

the other hand, a simple unbiased estimator is given by

⟨𝑝𝑘 ⟩ =
1

𝑁

𝑁∑
𝑖=1

1B𝑘 (𝝃i), (5)

where 𝝃𝑖 ∈ U is a sequence of i.i.d. uniform variates. Unfortunately,

this approach is flawed: usage of 𝑝𝑘 occurs in the denominator of the
path throughput weight. Since E[1/𝑋 ] ≠ 1/E[𝑋 ], using this estimator

could introduce significant bias: for example, ⟨𝑝𝑘 ⟩ can equal zero

if all 𝑁 tries fail to converge to the basin B𝑘 , in which case the

estimated path throughput weight would be infinite! Fortunately,

an unbiased estimator for the inverse ⟨1/𝑝𝑘⟩ can be created using a

simple iterative approach.

4.2 Unbiased SMS

The problem of computing an unbiased MC estimate of the recipro-

cal of an integral was studied by Booth [2007]. Recently, Qin et al.

[2015] built on this idea to create an unbiased photon gathering

strategy. The key idea underlying Booth’s approach is surprisingly

simple: turning the inverse into a geometric series moves the prob-

lematic integral from the denominator to the numerator:

1

𝑝𝑘
=

1∫
U 1B𝑘 (𝝃 ) d𝝃

=
1

1 − 𝑎 =

∞∑
𝑖=0

𝑎𝑖 , (6)
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Reference Biased SMS (ours) + improved constraints + two-stage

Unbiased SMS (ours) + improved constraints + two-stageMNEE

SR: 26% SR: 6% SR: 18% SR: 27%

SR: 6% SR: 18% SR: 29%

BT: 30 BT: 8 BT: 6

(c)(a) (b) (d)

(g)(e) (f) (h)

Fig. 6. Our two methods and their extensions illustrated on a normal-mapped dielectric sphere illuminated by a small area light; equal-time renderings (1

minute). Small insets summarize manifold walk success rate (SR) and average number of Bernoulli trials (BT), where applicable. (a): Previous work (MNEE)

fails to capture the full complexity of the caustic as it only finds at most one refractive path per shading point. For the remaining energy it falls back to path

tracing with high variance. (b): Our unbiased SMS method on its own. (c) - (d): Adding the constraint and two-stage manifold walk improvements which

increase the success rate while reducing the iteration count. (f) - (h): Same sequence but using our biased SMS variant which suppresses the noise of the

reciprocal probability estimation. As the success rate increases from left to right, bias goes down. The remaining bias mainly manifests itself in the regions

where the unbiased counterpart remains noisy. The biased version uses a sample set size of𝑀 = 16. (e): The path-traced reference was rendered for 5 hours.

where 𝑎 = 1 −
∫
U 1B𝑘 (𝝃 ) d𝝃 . This expansion is legal as long as

|𝑎 | < 1, which in our case—integrating an indicator function over

the unit square—is clearly satisfied. Unbiased estimation of the

reciprocal then entails repeated manifold walks with i.i.d. initial

points, denoted as ⟨𝑎⟩𝑗 below:

⟨1/𝑝𝑘⟩ = 1 +
∞∑
𝑖=1

𝑖∏
𝑗=1

⟨𝑎⟩𝑗 . (7)

Here, ⟨𝑎⟩𝑗 = 0 when manifold walk 𝑗 has converged to root 𝝃 (𝑘 )

and ⟨𝑎⟩𝑗 = 1 if it has found another root or diverged. The above

expression can thus be understood as a simple counting process:

we run repeated manifold walks until 𝝃 (𝑘 ) is found, and the number

of trials then provides an unbiased estimate of 1/𝑝𝑘 . This result can
also be understood in terms of the geometric distribution, which

models the number of Bernoulli trials needed until a certain event

with probability 𝑝𝑘 takes place. Here again, the expected number

of attempts is 1/𝑝𝑘 . Simulating a geometric distribution therefore

provides an unbiased estimator of the sought reciprocal and consti-

tutes the base ingredient of our unbiased SMS scheme, which we

lay out in Alg. 2.

Unbiased SMS is trivially added to any existing implementation

of MNEE. Its runtime cost is directly linked to the “complexity” of

specular paths in the scene: when the geometry is relatively smooth,

U contains a small number of solutions that are surrounded by large

ALGORITHM 2: Unbiased specular manifold sampling

Input: Shading point x1 and emitter position x3 with density 𝑝 (x3)
Output: Estimate of radiance traveling from x3 to x1

1 x2 ← sample a specular vertex as initial position

2 x∗
2
← manifold_walk(x1, x2, x3)

3 ⟨1/𝑝𝑘⟩ ← 1 ⊲ Estimate inverse probability of sampling x∗
2

4 while true do
5 x2 ← sample specular vertex as above

6 x′
2
← manifold_walk(x1, x2, x3)

7 if ∥x′
2
− x∗

2
∥ < Y then

8 break
9 ⟨1/𝑝𝑘⟩ ← ⟨1/𝑝𝑘⟩ + 1

10 return 𝑓𝑠 (x∗
2
) ·𝐺 (x1 ↔ x2 ↔ x3) · ⟨1/𝑝𝑘⟩ · 𝐿𝑒 (x3) /𝑝 (x3)

convergence basins. Lines 1-2 then rapidly converge to a particular

solution, and only a few iterations are required to find that same

solution once more in lines 4-9. However, when the geometry is

complex, many solutions may exist, and their convergence basins

also occupy smaller area in primary sample space. The required

number of trial iterations in lines 4-9 is a potential cause for concern

in this case. Furthermore, the variance of such an estimator for a

specific solution 𝑝𝑘 based on a geometric distribution is equal to

(1 − 𝑝𝑘 ) /𝑝2

𝑘
, which can become very large when 𝑝𝑘 ≈ 0.
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Another fundamental issue with unbiased SMS is that a consider-

able amount of computation is in some sense not used optimally:

repeated Bernoulli trials potentially find many additional solutions,

yet Alg. 2 only cares about one bit of information: whether or not

thesematch the solution that was previously found in line 2. It would

be desirable that the method leverages this additional information

to improve the estimates, but it is challenging to do without intro-

ducing bias. That said, the presence of some bias is often acceptable

if this improves other aspects, such as running time or variance,

without introducing undesirable visual artifacts in renderings. Moti-

vated by this, we devise a biased variant of SMS that addresses the

discussed concerns.

4.3 Biased SMS

The biased variant of our method (Alg. 3) replaces the unbounded

number of trial iterations by a fixed budget of𝑀 samples. Further-

more, instead of sampling one path, and then performing Bernoulli

trials to estimate its reciprocal probability, we simply cluster the𝑀

samples into a set of unique solutions x2
(𝑙 ) (𝑙 = 1, . . . , 𝐿). A biased

estimate of the reciprocal is then given by the relative number of oc-

currences 𝑛𝑙 of each solution, which also avoids the potential issues

with a division by zero discussed earlier. The (biased) estimator for

the total throughput at shading point x1 then becomes:

1

𝑀

𝐿∑
𝑙=1

𝑛𝑙
𝑓 (x2

(𝑙 ))
𝑝
(
x2
(𝑙 )
) ≈ 1

𝑀

𝐿∑
𝑙=1

𝑛𝑙 𝑓 (x2
(𝑙 ))𝑀

𝑛𝑙
=

𝐿∑
𝑙=1

𝑓 (x2
(𝑙 )) . (8)

Compared to the original unbiased approach, this variant has a fixed

iteration count, and it exploits the information provided by all sam-

ples. Note that it is consistent and will converge to the true solution

as𝑀 →∞. In our experiments, we observe that the resulting bias

is manifested as energy loss: regions of complex caustics that are

only rarely found by the Newton iteration appear darker, while the

unbiased variant produces the correct intensity at the cost of sub-

stantially increased variance and runtime. We believe that trading

variance for energy loss in this way could be preferable in applied

contexts (e.g. visual effects). Section 5 and the supplemental video

both present a number of results contrasting the two methods.

When setting 𝑀 = 1, biased SMS is closely related to a biased

version of MNEE where no MIS is applied to account for paths that

cannot be sampled using the manifold walk. The two algorithms are

ALGORITHM 3: Biased specular manifold sampling

Input: Shading point x1, emitter position x3 with density 𝑝 (x3) ,
and trial set size𝑀

Output: Estimate of radiance traveling from x3 to x1

1 𝑆 = {} ⊲ Set of unique solutions
2 for 𝑖 = 1, . . . , 𝑀 do
3 x2 ← sample a specular vertex as initial position

4 x∗
2
← manifold_walk(x1, x2, x3)

5 𝑆 = 𝑆 ∪ {x∗
2
}

6 result = 0 ⊲ Accumulate contribution

7 for 𝑘 = 1, . . . , size(𝑆) do
8 result += 𝑓𝑠 (x2

(𝑘 )) ·𝐺 (x1 ↔ x2

(𝑘 ) ↔ x3) · 𝐿𝑒 (x3) /𝑝 (x3)
9 return result

however not equivalent. Consider a situation where only one valid

solution exists but the straight-line initialization doesn’t converge

to it. In this case, MNEE can produce arbitrarily high variance—or in

case of point lights will miss the contribution entirely. SMS however

will still find the solution with non-zero probability.

Another interesting aspect of the biased variant is that it generates

many samples at once. Coherence in this computation could be

amenable to vectorized execution using modern SIMD instruction

sets, such as AVX512.

4.4 Improved specular manifold constraints

One significant difference of our method compared to all previous

applications of manifold walks is that we require the Newton solver

to take very large steps starting from an invalid state. In contrast,

MNEE renders refractive caustics with a straight-line initialization

that is generally already very close to the final solution, and applica-

tions of manifold walks to MCMC rendering [Jakob and Marschner

2012; Lehtinen et al. 2013] only make small perturbations to existing

valid paths, in which case the Newton iteration converges rapidly.

During the development of our technique, we found that manifold

walks would often converge surprisingly poorly when initialized

randomly, which led to serious convergence issues even in the case

of simple and smooth geometry (Fig. 8). We realized that these two

aspects are related: when taking large steps, Newton iterations based

on the original specular manifold constraints often produce invalid

back-facing solutions that impede convergence.

The main issue here is how the specular manifold constraint in

Eq. (1) encodes specular configurations via half-vector projections.

While this term conveniently subsumes both reflective and refrac-

tive cases with one equation, the formulation does not distinguish

between front- and back-facing solutions (Fig. 7).

invalid configuration

valid
refraction

Fig. 7. The half-vector constraint of Jakob and Marschner [2012] often

produces invalid back-facing solutions.

We propose a new constraint function that removes this ambigu-

ity. After choosing between reflection and transmission, note that

the law of reflection and Snell’s law, respectively, fully determine the

scattered direction S(𝝎, n, [) given the incident direction 𝝎, surface

normal n, and relative index of refraction [:

S(𝝎, n, [) =
{
S
r (𝝎, n), if reflection,

S
t (𝝎, n, [), if transmission,

where (9)

S
r (𝝎, n) = 2⟨𝝎, n⟩n − 𝝎, (10)

S
t (𝝎, n, [) = −[ (𝝎 − ⟨𝝎, n⟩n) − n

√
1 − [2 (1 − ⟨𝝎, n⟩2). (11)
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Fig. 8. Comparison between the previous half-vector based constraint func-

tion (top) and our new one based on angle differences (bottom). Left: 2D
illustrations of the constraints. Center: For a random initial point (red) on

the sphere, the half-vector constraint converges to an invalid configuration

after three iterations. Our improved formulation results in better global

convergence of the Newton solver. Right: Corresponding equal-time render-

ings on a dielectric sphere lit by a small area light source. Manifold walks

are started at uniformly sampled positions over the glass surface. The walk

success rate (SR) in the insets is measured over the entire image, where

pixels outside the caustic count as sampling failures.

When a vertex is in a valid physical configuration, its incident and

outgoing directions satisfy 𝝎o = S(𝝎i, n, [). Another way of encod-

ing specular manifold constraints thus entails measuring the differ-

ence between 𝝎o and S(𝝎i, n, [). We experimented with different

implementations of such a distance function, including simple 1D

angle measurements ∠(𝝎o, S(𝝎i, n, [)) that produce a non-square
Jacobian ∇C requiring the use of a pseudoinverse in Newton it-

erations. Ultimately, we found that 2D constraints c𝑖 : R2 → R2

exhibit better behavior, and we therefore measure a difference in

the spherical coordinates of both vectors
6
:

c𝑖 =
(
\ (S(−−−−−→x𝑖x𝑖−1, n𝑖 , [𝑖 )) − \ (−−−−→x𝑖x𝑖+1)
𝜙 (S(−−−−−→x𝑖x𝑖−1, n𝑖 , [𝑖 )) − 𝜙 (−−−−→x𝑖x𝑖+1)

)
(12)

where \ (𝝎) = cos
−1 (𝝎𝑧) and 𝜙 (𝝎) = atan2(𝝎𝑦,𝝎𝑥 ) determine as-

sociated spherical coordinates. Figure 8 showcases the significantly

improved convergence due to these constraints.

Note that the scattering operation S(·) can fail in configurations

with total internal reflection. In such cases we are still able to eval-

uate the constraint for the opposite light direction by taking the

difference between S(𝝎o, n, [−1) and 𝝎i.

4.5 Two-stage manifold walks

Comparing the nature of specular paths in a simple cardioid caustic

(Fig. 4) to a reflection from normal-mapped geometry (Fig. 9, left col-

umn), we observe that the more complex caustic is a superposition

of many different solutions with a fairly localized effect. The space

U is largely empty, containing only a few small convergence basins

that are clustered together (Fig. 10a). The probability of finding a

6
The subtraction of azimuth angles requires special handling due to their periodicity:

the result must be mapped onto [−𝜋, 𝜋 ] using a floating point modulo operation.
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14 SPP

RMSE: 0.15

SR: 31%

12 SPP

RMSE: 0.07

SR: 10%

9 SPP

RMSE: 0.21

SR: 3%

12 SPP

RMSE: 0.38

Fig. 9. Two scenes showing specular reflection and refraction on normal-

mapped surfaces, rendered with unbiased SMS. We show equal-time com-

parison (1 minute) between starting points distributed uniformly over the

shapes (top) and our two-pass manifold walks with improved starting points

(bottom). Insets show computed number of samples per pixel (SPP), root

mean square error (RMSE) compared to a converged reference, and man-

ifold walk success rate (SR) measured over all pixels. Note how the cost

of the additional manifold walk is amortized by a faster probability esti-

mate resulting in a similar number of computed samples between the two

methods.

valid solution is therefore low. Furthermore, estimating the recip-

rocal probability depends on our ability to find the same solution
once more, which is even less likely. Unbiased SMS estimates there-

fore tend be slow and noisy, while biased SMS loses a considerable

amount of energy.

To address these problems, we will exploit prior knowledge to

devise an improved strategy for generating initial guesses. To moti-

vate our approach, consider a caustic generated by a smooth planar

surface (e.g., a flat version of the metal surface shown in Fig. 9).

Points on this caustic all correspond to a single solution with a large

convergence basin inU. If we begin to make the surface more com-

plex, e.g., by perturbing positions or shading normals, this single

solution splits into multiple nearby solutions with disproportion-

ately smaller convergence basins. Stronger geometric perturbations

tend to produce more solutions that are spread further apart. The

aforementioned issues with SMS could be addressed if there was a

way to predict the locations of these solutions and construct starting

points in their proximity in a more targeted manner. We propose

a simple technique to create such a targeted initial guess for the

special case of normal-mapped surfaces.
7

7
The high-level idea is more general and can likely be extended to other approaches

for introducing surface detail, such as displacement maps.
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(a) (b)

Fig. 10. (a): Convergence basins of the Reflective Plane scene in Fig. 9a,

for one shading point on the ground inside the caustic region. (b): Sampling

density (green) of intermediate points after the first manifold walk in our

two-pass approach, which focuses on the cluster of solutions.

Our two-stage sampling approach performs two manifold walks:

the first stage ignores the specified normal map and finds specular

paths on the original smooth surface. Such a smooth manifold walk

will converge to a point that roughly lies at the center of the cluster

of solutions in Fig. 10a. However, instead of an ordinary manifold

walk, our first stage relies on an offset manifold walk [Jakob and

Marschner 2012], whose manifold constraint tilts the normal of the

underlying surface. The normal perturbation is randomly chosen

from the distribution of normals that are present in the normal

map. Cheaper approximations are also usable—we use a Gaussian

approximation of the entire normal map obtained from the lowest

MIP level of a LEAN map [Olano and Baker 2010]. Importantly,

this offset normal is chosen before each manifold walk and does

not change during the iteration which converges rapidly and with

high probability (i.e. the convergence basin is large). This initial ran-

domized manifold walk brings us into the proximity of the various

solutions (green density in Fig. 10b); a second manifold walk, on the

bumpy surface, started from there takes us all the way to a solution.

Estimation of the reciprocal probability of this adapted sampling

strategy is surprisingly easy: the only requirement is that two-stage

sampling is consistently used in both Lines 1-2 and Lines 4-9 of Alg. 2.

It would generally appear that the two-stage sampling should be

more costly, but in our experiments (e.g. Fig. 9) we observed roughly

equal performance. The reason for this is that the reciprocal proba-

bility estimator requires fewer iterations to rediscover a solution.

At the same time, variance is reduced noticeably.

4.6 Glints

Our method generalizes straightforwardly to the problem of render-

ing glints, which are miniscule subpixel reflections of a light source

with narrow angular support (e.g. the sun) on high-frequency spec-

ular microgeometry. Rendering glints using standard Monte Carlo

techniques tends to be prohibitively expensive, since millions of

samples per pixel may be needed to obtain an acceptable result.

Interestingly, the problem of finding glints is almost identical to

the caustic case, the main exception being that the search is now

constrained to small surface regions observed by individual pixels

and their reconstruction filters. Previous general glint rendering

techniques [Yan et al. 2014, 2016] evaluate an effective integrated

Pixel footprint

Fig. 11. Specular manifold sampling can also find connections within a pixel

footprint to render glints that arise due to specular microstructure.

BRDF over the entire pixel footprint and produce very high quality

estimates at the cost of burdensome 4D spatio-directional hierar-

chies that are necessary to organize and query the distribution of

normals. Our goal is to implement an unbiased estimate of such a

query using manifold walks.

Our method generates random starting points within the pixel

and then runs unbiased or biased SMS to find solutions (Fig. 11).

In contrast to prior work, which introduced a small amount of in-
trinsic roughness to relax the problem, we solve the unmodified

problem with a discrete set of solutions to find a path x̄ = x0, x1, x2

connecting the camera to a sampled emitter position via a single
8

specular reflection. After tracing the initial camera ray, we approxi-

mate the projected pixel footprint with a small parallelogram based

on ray differentials [Igehy 1999]. We perform local manifold walks

in UV space to refine the initial guess. This leads to much higher

performance compared to the caustic case as no costly ray tracing

operation is needed to re-project onto the surface. We terminate

paths that step outside the parallelogram since they are unlikely to

find usable solutions. Like prior work, we assume that the endpoints

x0 and x2 are distant, in which case changes in the half-vector across

the parallelogram are minimal. It can thus be approximated by a

constant, which simplifies the search for solutions: in particular,

the specular manifold constraint can be simplified to a function

that attempts to equate this fixed half-vector and the local shading

normal, both expressed in 2D slope space. Like previous work, we

use high-resolution normal maps to encode the subpixel surface

details in our scenes. In principle, the method could be extended to

other types of normal variation or actual geometric displacement.

To robustly apply our glint rendering technique in scenes with

complex lighting (e.g. high-frequency environment maps), we fur-

ther combine our SMS strategy with standard BSDF sampling in a

multiple importance sampling (MIS) framework. We found it very

effective to use approximate MIS weights based on the directional

distributions from the light source and the effective BSDF of the

pixel footprint provided by a LEAN map. As shown in Fig. 12 this

approach successfully separates the regions of the integrands where

one sampling strategy is preferable over the other. While precom-

puting a LEAN map adds some storage overhead, it is orders of

magnitude lower than Yan et al.’s spatio-directional trees. We also

8
Glints involving multiple specular reflections on displaced geometry can in principle

be found using our method and could be an interesting topic for future work.
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(a) (b) (c)

Fig. 12. Curved metal surface with small scratches lit by a high-frequency

environment map containing multiple light sources. Weighting using mul-

tiple importance sampling (MIS) effectively uses each technique where it

performs best: (a): Our method (unbiased SMS) captures the direct illumina-

tion from the bright light sources inside the scratches. (b): Standard BSDF

sampling focuses on reflections from flat regions. (c): Combined result.

note that our method always renders the non-smoothed input nor-

mal map without geometric approximations—the LEAN map is only

used as a proxy to compute an effective BSDF sampling density over

a pixel footprint, enabling unbiased combination of our sampling

strategy with other standard techniques via MIS.

4.7 Integration into rendering algorithms

Specular manifold sampling is a general building block in the design

of rendering algorithms, and there is considerable flexibility in its

usage. We experimented with different ways of incorporating it

into a unidirectional path tracer and ultimately opted for uniform

seed-point generation on specially marked “caustic caster” shapes.

For two-bounce caustics, shown in Section 5, the seed point on the

second interface is found by tracing a ray through the first vertex

and performing either reflection or refraction depending on the

type of surface. SMS is very effective for sampling high-frequency

caustic paths from (near) specular surfaces and often greatly out-

performs standard emitter or BSDF sampling strategies. However,

in the case of significant surface roughness or smooth illumination,

standard strategies remain superior. Ideally, all of these strategies

would be combined via MIS to improve their robustness, as we do

in Section 4.6 for the special case of glints. However, determination

of suitable probabilities in the more general caustic setting remains

an open problem. SMS iterations are also relatively expensive, and

we use them even at shading points where no possible connections

exist. Conservative criteria that specify when SMS should be used

are another interesting avenue for future work.

5 RESULTS

We now present several results rendered with our method as well

as comparisons to relevant prior work. We based our implementa-

tion on the Mitsuba 2 renderer [Nimier-David et al. 2019]. All time

measurements in this article were recorded on a compute node with

2 Xeon 6132 processors, each with 14 2.6GHz cores. Many of the

rendered results contain small insets with the manifold walk success

rate (SR) for the corresponding image. These numbers may seem

low at first, but are averaged over the full image—including pixels

that do not contain any caustics for SMS to find.

Many of the results below are additionally shown in animated

form as part of the supplemental video:

• Comparison of SMS against priorwork on three scenes (Fig. 14):

Swimming Pool, Reflective Plane, and Refractive Sphere.

• Temporal coherency and the effect of the trial set size𝑀 in

biased SMS (Fig. 15).

• Two-bounce refractive caustics in the Double-Refractive

Slab scene (Fig. 18).

• Temporal coherency of SMS on glints in the Shoes and Ket-

tle scenes (Fig. 19).

5.1 Shop window scene

Figure 1 showcases our method in an example involving glints and

caustics on complex geometry. It features several different caustics

rendered using unbiased SMS: reflective caustics caused by a spot-

light shining on the gold pedestals, and a two-bounce refractive

caustic from a point light hidden inside the middle pedestal. The

shoes have a glittery appearance that is rendered using biased SMS

for glints. We disable caustics from higher order scattering (e.g. two

or more bounces between the pedestals). Many of the caustics in

this scene are SDS paths that a regular path tracer cannot find. We

can still compare to a path tracer by adding some surface roughness

(Beckmann NDF with 𝛼 = 0.005) to all specular shapes. Figure 13

shows such a comparison, where we only visualize the contributions

sampled by SMS. Given equal render time, our method outperforms

regular path tracing by a significant margin.

The scene also illustrates a current limitation of our method:

even though SMS can effectively sample light connections through

specular interfaces, there is still significant variance in the scene

coming from other challenging paths, mainly the indirect lighting

caused by the caustics; see Fig. 13b and the remaining noise in Fig. 1.

Our method cannot sample these paths explicitly; the issue could

be addressed by path guiding methods.

2685 SPP

148 SPP

(b)

(a)

Fig. 13. Modified version of the Shop Window scene from Fig. 1 where

a small amount of surface roughness is added to the previously purely

specular surfaces, enabling a standard path tracer (a) to find the same light

transport paths as our proposed method (b). Both renderings are computed

in equal time (20 minutes), showing only contributions due to caustics.
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Path tracing
3334 spp

“MNEE”
154 sppREFLECTIVE PLANE  1080x1080 pixels, 5 min

Ours (biased)
4 spp, M = 32

Ours (unbiased)
30 spp

Reference (PT)
~12 million spp

Path tracing
2043 spp

MNEE
86 sppREFRACTIVE SPHERE  1080x1080 pixels, 5 min

Ours (biased)
32 spp, M = 8

Ours (unbiased)
106 spp

Reference (PT)
~9 million spp

Path tracing
976 spp

MNEE
88 sppSWIMMING POOL  1920x1080 pixels, 5 min

Ours (biased)
28 spp, M = 4

Ours (unbiased)
52 spp

Reference (PT)
~3.5 million spp

Fig. 14. Equal-time comparison (5 minutes) between path tracing, prior-work MNEE [Hanika et al. 2015a], and both unbiased and biased versions of our

proposed SMS method. Previous work can only produce (at most) one connection to the light source via the specular interface, whereas our techniques

can sample the full range of light paths either in an unbiased or biased way. The latter removes some of the high-frequency noise introduced by unbiased

probability estimation and trades it for energy loss with the trial-set size parameter𝑀 . We report samples per pixel (spp) computed by each method, as well as

the chosen𝑀 in the biased case.

5.2 Specular manifold sampling

In Fig. 14 we compare the effectiveness of SMS to brute-force path

tracing and the previous state-of-the-art method MNEE of Hanika

et al. [2015a]. We examine three scenes with challenging caustics

due to normal-mapped surfaces. The Swimming Pool and Refrac-

tive caustic scenes are a famous examples where both uni- and

bidirectional path tracing techniques fail to discover the prominent

SDS paths that generate intricate patterns on the ground plane.

MNEE improves on this but misses all but one light connection.

For the remaining paths it has to either fall back to the brute-force

strategy that has significant variance still or suffers from severe

energy loss if those light connections are omitted. Our method finds

all paths and significantly outperforms the others in equal time.

The Reflective Plane scene is an example where MNEE was

previously not applicable. For a clearer comparison, we added a

variation (called “MNEE” in quotes) that constructs a deterministic

seed path by tracing a ray from the shading point towards the center

of the object’s bounding box. Since the caustic is the superposition of

many individual solutions, this is clearly not sufficient and “MNEE”

ends up finding only a very small part of the caustic. Biased versions

of SMS can optionally be applied and reduce high-frequency noise

caused by the unbiased probability estimate. This comes at a higher
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M = 4, 36 spp M = 8, 19 spp M = 32, 4 spp

M = 1, 137 spp M = 2, 87 spp M = 8, 32 spp

M = 1, 87 spp M = 2, 41 spp M = 4, 28 spp
0.7

0.4

9.8

0

0

0

Fig. 15. Comparing our biased method with varying trial set sizes 𝑀 , at

equal render time of 5 minutes. As𝑀 increases, each individual radiance

estimate becomes more expensive but less energy of the caustics is lost.

Overlays show pixel-wise squared error compared to unbiased SMS.

cost per individual sample and some energy loss, the extent of

which can be controlled by the trial set size𝑀 . We want to highlight

that the biased method is free of artifacts and generates temporally

coherent results despite its limited exploration of a random subset

of the path space. Animated results of this comparison for different

values of𝑀 are shown in the supplemental video.

5.3 Biased SMS

Our biased SMS approach involves an interesting tradeoff between

sample variance and energy loss. The trial set size parameter𝑀 plays

an important role here: it directly relates to how much effort the

sampler spends per radiance estimate from caustics, and indirectly

controls how much of the caustic is found. We explore this effect in

Fig. 15 on the same scenes as used above. Choosing the optimal𝑀 is

currently a user choice and could be investigated more in the future.

5.4 Geometric displacement

Although many of the shown results involve caustics from specular

surfaces with normal maps, our method is more general, and we also

found it to be effective on surfaces with true geometric detail (e.g.

from a displacement map), which we illustrate in Fig. 16. When not

using our two-stage sampling method, which is currently limited

to normal maps, manifold sampling performs equally well on both

types of surfaces as confirmed by the similar success rates. This

seems counter-intuitive at first, since smoother geometry should

also result in a specular manifold that is easier to navigate. However,

N
or

m
al

 m
ap

pi
ng

D
is

pl
ac

em
en

t

SR: 36%

26 SPP

SR: 10%

11 SPP

SR: 10%

19 SPP
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Fig. 16. Top: Sequence of refractive spheres with increasingly complex

normal maps. Bottom: The same setup, but this time with actual displaced

geometry. Insets show computed number of samples per pixel (SPP) and

the manifold walk success rate (SR) measured over all pixels in the image.

The manifold walks perform about equally on both geometry types.

the disagreement between actual geometry and the “fake” surface

variation from normal maps can also limit the Newton solver’s effi-

ciency. The ray-tracing-heavy nature of the manifold walks and the

underlying re-projection steps lead to slightly reduced performance

in scenes with dense geometric tessellation.

5.5 Surface roughness

Like prior work on specular manifolds, our method generalizes

to near-specular or rough surfaces by performing offset manifold

walks previously described in Section 4.5. Here, we sample an offset
normal from the material’s microfacet distribution before the SMS

step. The manifold walk then searches for specular connections in-

volving that offset normal instead of the true shading normal. Only

a finite number of solutions exists for this specific offset normal,

and the probability estimate of therefore remains unchanged. Aver-

aging over paths sampled in this manner converges to the correct

solution [Hanika et al. 2015a].

Ours PT Ours PT Ours PT

Fig. 17. Rough reflective plane with a roughmetallic surface with Beckmann

normal distribution. As the roughness increases from left to right, the path

tracer (PT) becomes more capable of performing the connection to the light

source on specular plane directly, whereas our proposed sampling strategy

loses its efficiency. Both methods use equal render time of 5 minutes.
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Path tracing
2832 spp

MNEE
229 spp

Ours (biased)
41 spp, M = 8

Ours (unbiased)
144 spp

Reference (PT)
~10 million sppDOUBLE-REFRACTIVE SLAB 1080x1080 pixels, 5 min

Fig. 18. Equal-time comparison (5 minutes) of our method on a challenging scene where SMS samples a light connection involving two consecutive specular

refractions. The two-sided solid piece of glass is modeled with geometric displacement.

Figure 17 shows a sequence of increasingly rough reflective sur-

faces. Note how the caustic is at first sharp and full of high-frequency

details, and becomes progressively blurry from left to right. This

blur also enables a unidirectional path tracer to find valid light con-

nections more often: in the limit case, every point on the surface is

contributing to the shading point. As our method handles rough-

ness by integrating over many perfectly specular light paths with

randomized offset normals, the opposite is true for our method and

its variance increases. We only recommend using our technique

for specular or near-specular surfaces and switching over to con-

ventional path sampling techniques in other cases. In the future, it

would be interesting to incorporate a form of multiple importance

sampling to robustly handle both extremes in addition to intermedi-

ate cases. Note that the same argument applies also to scenes with

low-frequency lighting, e.g. largely constant environment maps.

5.6 Multiple specular interactions

Like MNEE, the principle behind our method generalizes to longer

chains with multiple specular interactions. In Fig. 18, we show an

intricate caustic pattern caused by double refraction through a solid

displaced piece of glass. We again compare our unbiased and biased

SMS variants to a standard path tracer and MNEE. Multiple interac-

tions increase the dimension of the space of initial configurations

that SMS must generate: we could generate initial rays to start the

manifold walks in the same way as before, but at each interaction we

additionally decide between reflection or refraction (if applicable),

and whether or not to terminate the chain and attempt to connect

to a light position. To keep variance manageable we found it best

to limit SMS to a single family of light paths in this setting (e.g.

paths of fixed length with only refractive events). In cases where

this increased variance is not acceptable, the biased technique can

still be applied—but for the same reasons there will be a potentially

significant energy loss. As shown in the Double-Refractive Slab

scene, SMS can still produce good results, but better strategies for

sampling initial configurations will be required to turn SMS into a

fully general sampling strategy that can efficiently find all possible
chains of specular interactions.

5.7 Glints

Figure 19 examines the performance of our glint rendering technique

on two scenes with complex microstructure specified using normal

maps. We compare our SMS to the state-of-the-art method of Yan

et al. [2016]. Both methods make use of MIS in this comparison.

The Shoes scene features a glittery pair of shoes with procedural

normal displacement by a Gaussian height field and is lit by a sky

with an almost purely directional sun. The Kettle scene involves

brushed metal with very strong anisotropy. It is illuminated by the

Grace Cathedral environment map, which includes several bright

and narrow light sources. Stochastic sampling of glint solutions is

beneficial in these cases, since several complementary sources of

variance can be reduced at the same time.

We found the biased SMS variant to generally be more practical

for glint rendering compared to its unbiased counterpart.
9
The po-

tentially unbounded number of iterations in the recursive unbiased

probability estimator, combined with extremely high-frequency nor-

mal map detail, occasionally produces acute outliers in the pixel

estimate that lead to poor convergence, as seen in the plots.

Note that all methods in Fig. 19 converge to slightly different

results, but they all find the same individual glints and have very

similar appearance overall. Our method uses 100–300× less memory

compared to previous work (e.g. 110MiB vs. 11GiB). At the same

time, it converges in an equal or shorter amount of time and still gen-

erates temporally coherent animations. Please see the supplemental

video for an animated demonstration.

6 CONCLUSION

We introduced a simple and powerful specular path sampling tech-

nique that combines deterministic root finding with stochastic sam-

pling in a pure Monte Carlo setting. The basic method can be used

in a variety of different ways, and we demonstrated example appli-

cations in the context of efficient path tracing of glints and caustics.

Our approach is not restricted to unidirectional path tracing, and

we contemplate its utility in bidirectional and even MCMCmethods,

where manifold walks were originally proposed.

9
The bias here only involves the probability estimate. In practice, even the “unbiased”

version will not match a brute-force result perfectly due to the far-field approximation.

ACM Trans. Graph., Vol. 39, No. 4, Article 149. Publication date: July 2020.



149:14 • Tizian Zeltner, Iliyan Georgiev, and Wenzel Jakob

Ours (biased)
2800 spp, 110MB

Yan [2016]
2500 spp, 11GB

Reference (PT)
100k spp

SHOES
800x800 pixels, 9 min

Ours (biased)
2400 spp, 110MB

Yan [2016]
2400 spp, 31GB

Reference (PT)
200k spp

KETTLE
800x800 pixels, 9 min

Convergence plot
Root-mean-square-error (RMSE) over time [s]

Convergence plot
Root-mean-square-error (RMSE) over time [s]

Fig. 19. Equal-time comparison (9 minutes) of our glint rendering method to prior work specific to this problem [Yan et al. 2016]. Shoes scene: highly directional

illumination from the sun, Kettle scene: grace cathedral environment map where integration over multiple sources of variance (i.e. all the lights) is critical.

Our method yields comparable results in the first scenario and is superior in the second. At the same time, our method requires 100–300× less memory. The

insets and corresponding convergence plots focus on different parts of the glinty appearance.

Building on a simple unbiased algorithm, we presented several

complementary extensions and improvements. For example, better

strategies for sampling seeds paths can further improve convergence,

and such heuristics are easy to integrate into our method without

introducing bias. Improved manifold constraints expand the size of

the convergence basins in primary sample space. A further change

yields an intentionally biased estimator with desirable properties

for production usage. Far-field approximations in the context of

specular glints lead to a particularly simple iterative algorithm,

whose steps no longer require the use of ray tracing operations.

In the future, we would like to explore further acceleration of this

variant leveraging vectorized execution.

Determining when to use our method is another important aspect

for future investigation. Attempting many connections that are ulti-

mately unsuccessful can consume a large amount of computation.

While glints would benefit from simple culling heuristics, e.g. based

on cones bounding the normal variation inside the pixel, the general

case of caustics from arbitrary specular geometry is significantly

more challenging. Combining our techniques with others via multi-

ple importance sampling in this general setting is another pertinent

problem.

Our article focuses mainly on the generation of subpaths with a

single specular vertex. While our method in principle also general-

izes to more complex path classes with multiple specular reflection,

performance using our current strategy for choosing starting points

remains suboptimal and could be an interesting topic for future work.

We wish to pursue these and related improvements, and envision

a unified path sampling strategy that elevates stochastic manifold

walks to a standard building block in the design of Monte Carlo

rendering methods.
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