Dr.Jit: A Just-In-Time Compiler for Differentiable Rendering

WENZEL JAKOB, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
SÉBASTIEN SPEIERER, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
NICOLAS ROUSSEL, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
DELIO VICINI, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland

Fig. 1. Dr.Jit is a domain-specific compiler for physically-based (differentiable) rendering. When Dr.Jit executes a rendering algorithm, it generates a trace: a large graph comprised of arithmetic, loops, ray tracing operations, and polymorphic calls that exchange information between the rendering algorithm and scene objects (shapes, BSDFs, textures, emitters, etc.). Dr.Jit specializes this graph to the provided scene and compiles it into a large data-parallel kernel (“megakernel”) via LLVM or OptiX backends, achieving geometric mean GPU speedups of 3.70× (vs. Mitsuba 2) and 2.14× (vs. PBRT 4). While helpful for ordinary rendering, the main purpose of Dr.Jit is to dynamically compile differential simulations. Recent methods in this area decompose a larger differentiation task into a series of incremental steps, which requires an unusually fine-grained approach to automatic differentiation. Dr.Jit supports such transformations in forward and reverse modes: the former computes a perturbation in image space, which is helpful for debugging and visualization. The latter provides derivatives in parameter space (e.g. texels of the wallpaper) for simultaneous optimization of large numbers of unknowns.

Dr.Jit is a new just-in-time compiler for physically based rendering and its derivative. Dr.Jit expedites research on these topics in two ways: first, it traces high-level simulation code (e.g., written in Python) and aggressively simplifies and specializes the resulting program representation, producing data-parallel kernels with state-of-the-art performance on CPUs and GPUs. Second, it simplifies the development of differentiable rendering algorithms. Efficient methods in this area turn the derivative of a simulation into a simulation of the derivative. Dr.Jit provides fine-grained control over the process of automatic differentiation to help with this transformation. Specialization is particularly helpful in the context of differentiation, since large parts of the simulation ultimately do not influence the computed gradients. Dr.Jit tracks data dependencies globally to find and remove redundant computation.

Authors’ addresses: Wenzel Jakob, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, wenzel.jakob@epfl.ch; Sébastien Speierer, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, sebastien.speierer@epfl.ch; Nicolas Roussel, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, nicolas.roussel@epfl.ch; Delio Vicini, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland, delio.vicini@epfl.ch.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ACM Reference Format:

1 INTRODUCTION

Recent progress in the area of physically based differentiable rendering (henceforth “PBDR”) has led to the development of methods that can differentiate light transport simulations with respect to arbitrary scene parameters. Combined with a gradient-based optimizer, they can solve nonlinear problems involving large sets of unknowns. Diverse scientific and engineering disciplines require the inverse analysis of images and stand to benefit from these developments.

While the theory of PBDR continues to evolve, practical aspects have remained a persistent challenge. For example, the reverse-mode derivative of a conceptually simple algorithm like path tracing [Kajiya 1986] with precautions for linear time complexity [Vicini et al. 2021] and unbiased visibility handling [Bangaru et al. 2020] turns into an enormously complicated function. Correct implementation of such a large and intricate program is near-impossible even for experts in the field. Mere correctness is also unsatisfactory: optimizations tend to run for thousands of iterations, hence the resulting program needs to be fast. It is evident that better tools are needed to bridge this conspicuous gap between PBDR theory and practice.

The design of Dr.Jit was guided by a single unifying objective: it should provide a practical and efficient foundation for work in this area. Most architectural decisions are direct consequences of this overarching goal. For example, consider the differentiation step that is implicit in differentiable rendering. Manual differentiation is tedious and error-prone, hence it is logical that the system should build on automatic differentiation (AD) to simplify development.

However, the needs of PBDR are more specific: standard use of AD to differentiate a rendering algorithm produces an inefficient and biased derivative that precludes many applications. Recent work addresses inefficiencies using physical reciprocity [Nimier-David et al. 2020] and arithmetic invertibility [Vicini et al. 2021] to turn the derivative of a simulation into a simulation of the derivative, while re-parameterizing the integration domain to remove bias [Loubet et al. 2019]. These steps move the differentiation operation into the random walk, where it introduces partial derivative terms at each scattering event. This has implications on the design of the system: the derivatives must somehow be (pre-)compiled, since the machinery of AD is too slow to be used dynamically at such high rates.

Differentiating a simulation changes the underlying computation, but the details of this change depend on the scene, simulation algorithm, and optimization task. When the optimization only targets a subset of the scene’s parameters, it is desirable that the system uses this information to remove steps that cannot influence the computed gradient. The dynamic nature of this problem calls for a just-in-time (JIT) compilation.

Dr.Jit addresses these requirements using an approach based on tracing. It executes simulation code in a deferred manner by recording encountered operations into a trace for subsequent compilation and execution on a target device. This process is automatic and language-agnostic (Python and C++ are currently supported).

A key difference to Mitsuba 2 [Nimier-David et al. 2019], which also uses tracing, is that Dr.Jit must handle a larger set of operations to guarantee successful megakernel generation. A Dr.Jit (differential) rendering step captures loops, polymorphism, and ray intersection operations without interruption, returning an unevaluated image in the form of a very large trace that encompasses the rendering algorithm and implementations of all referenced scene objects including materials, textures, volumes, light sources, etc.

This global representation reveals optimization opportunities. For example, suppose that rendering does not integrate over time: it is then safe to remove time-related variables from loops and function interfaces. Similarly, the derivatives of many program variables do not influence the computed parameter gradient and can be deleted.

Dr.Jit finally compiles and evaluates the trace via OptiX [Parker et al. 2010] or LLVM [Lattner and Adve 2004]. The former produces GPU kernels leveraging ray tracing hardware acceleration, while the latter generates vectorized code for diverse CPU architectures.

In addition to Dr.Jit, we also present Mitsuba 3, a new version of the Mitsuba renderer that builds on Dr.Jit. Both projects are available under an open source license at https://github.com/mitsuba-renderer/drjit and https://github.com/mitsuba-renderer/mitsuba3.

Differentiable rendering subsumes ordinary rendering, and Dr.Jit achieves state-of-the-art performance on both tasks. We substantiate all performance-related observations experimentally. Following a review of related work, the remainder of this article discusses compilation (Section 3) and differentiation (Section 4) in turn.

2 RELATED WORK AND BACKGROUND

2.1 Array programming

Increasing interest in machine learning in recent years has precipitated the creation of numerous frameworks that combine AD with
n-dimensional array representations. They use JIT backends like XLA [Google 2017] to fuse operations into efficient kernels. Given widespread success and obvious similarities to Dr.Jit, it is not unreasonable to wonder whether this article could have been cut short by a recommendation to implement PBDR methods on top of such a framework? We investigate this question in Section 3 and find that PBDR workloads exhibit characteristics that are unusual in the array programming setting, causing them to fall off the fast path.

2.2 Automatic Differentiation

Manual differentiation of mathematical expressions is error-prone and mechanical. The natural desire to delegate this task to a computer began with pioneering work in the 1950s and 1970s [Nolan 1953; Wengert 1964; Linnainmaa 1976] followed by comprehensive study in the 1980s [Speelpenning 1980; Griewank et al. 1989]. Griewank and Walther’s book [2008] reviews what has been learned about AD over the course of these many decades.

Given the consolidated understanding of the mathematical structure and asymptotic complexity of various derivative propagation strategies, there is a surprising degree of variety when it comes to how AD should be exposed to the user. The space of methods includes tracing, source-to-source transformation of abstract syntax trees or intermediate representations (IR), and hybrids combining tracing with transformation. Differentiation can target scalar, dense, or sparse array programs in forward, reverse-, and mixed modes, computing gradients or higher-order derivatives of pure and impure functions. Covering all techniques in detail is far beyond the scope of this paper, and we refer to a recent survey by Baidin et al. [2018]. This section only covers core concepts, noteworthy related methods for first-order derivatives, and their relationship to our approach.

Directionality. The main high-level flavors of AD are the forward and reverse (also known as adjoint or backward) modes. Forward mode evaluates a Jacobian-vector-product (often abbreviated “JVP”) of the form \(\delta y = J_f \delta x \), where \(J_f \) is the Jacobian of the primal (i.e., original) computation \(y = f(x) \), and reverse mode evaluates a vector-Jacobian-product (“VJP”) of the form \(\delta x = J^T v \). Both can in principle compute the same derivatives, but forward mode does this more efficiently when the function being differentiated has few inputs (ideally just one), while reverse mode is efficient if it has few outputs. Realistic scene descriptions have million of unknowns, hence practical differentiable rendering depends on reverse mode.

Reverse mode. The key issue with reverse mode is that it inverts the data dependencies of the original program. The derivative of this reversed program references intermediate steps of the primal calculation, which raises the age-old question of how they should be obtained. Exhaustive storage is simple but does not scale, as modern processors can generate many terabytes of intermediate state per second. The usual remedy is to only store this state at a sparse set of checkpoints with later recovery via reevaluation from the nearest one [Volin and Ostrovskii 1985]. Automatic recursive usage of this pattern reduces storage and runtime overheads of a program with \(t \) operations to a factor of \(O(\log t) \) [Siskind and Pearlmutter 2018].

Adjoints. When available, custom adjoints are generally preferable to checkpointing. These differentiation techniques exploit problem-specific traits to reduce storage and reevaluation overheads. For example, differentiating through all steps of a multivariate Newton’s method is unnecessarily inefficient, since the implicit function theorem provides the answer directly from the iteration’s fixed point. Similarly, the solution of an ordinary differential equation admits an efficient adjoint that reverses time [Pontryagin 1962].

Adjoints for rendering. Light transport also admits custom adjoints: Radiative Backpropagation (RB) [Nimier-David et al. 2020] and Path Replay Backpropagation (PRB) [Vicini et al. 2021] transform the derivative of a simulation into an equivalent and more efficient simulation of derivative radiation. Section 4.1 discusses them further.

Tracing. Assuming that efficient adjoints are available, the next important question is how the computation to be differentiated should be ingested. Methods based on tracing record an evaluation trace (also referred to as a Wengert tape or computation graph) of all differentiable arithmetic operations; differentiation traverses this trace once more to propagate derivatives in forward or reverse mode. The trace ignores control flow constructs and stores unrolled versions of all loops and taken branches. Tracing has seen widespread adoption through tools like PyTorch [Paszke et al. 2017], in which a typical neural network produces a trace with a few hundred high-level operations. The reverse-mode sweep then invokes efficient adjoints of each operation. Tracing inherits the usual caveats of reverse mode—for example, differentiating long-running loops can be challenging. It also adds runtime overheads that can normally be amortized when differentiating array programs, but they dominate in scalar programs that manipulate individual floating point values. In iterative computations, tracing is often performed repeatedly, which causes further overheads and inhibits optimization.

Source transformation. AD via source transformation converts the source code of a program into its derivative. In essence, differentiation becomes a one-time compilation step, which enables practical differentiation of scalar programs. Figure 2 illustrates this on a (not particularly good) implementation of an integer power \(x^n \), with JVP/VJP variants generated by Tapenade [Hascoet and Pascaud 2013]. A key advantage of this approach is the preservation of control flow: unlike an unrolled trace, the programs in Figure 2 work regardless of the value of \(n \) (the number of loop iterations).

![Fig. 2. Derivatives of a program obtained using source transformation. Here, pow raises x to the n-th power (n ∈ N). The JVP/VJP versions were generated by Tapenade [Hascoet and Pascaud 2013] and translated to Python. Both require the primal function arguments as input. The JVP further takes the function input derivatives and converts them into output derivatives, while the VJP takes output derivatives and converts them into input derivatives.](image)
Loops continue to be a nuisance, however: observe how the VJP requires two of them: the first records all intermediate loop state into a stack variable that is later consumed by a reversed loop. This poses difficulties on massively parallel architectures like GPUs: stack or
shadow memory must be provisioned for all threads running in parallel, while handling worst-case requirements that are generally unknown. The JVP and VJP are equivalent in this specific example, since pow only has a single differentiable argument and return value.

Curiously, optimizations that are straightforward in one AD approach can become relatively difficult in another. For example, only a subset of program variables usually affects the final gradient; it is desirable that the AD system recognizes this to avoid unnecessary adjoint evaluations. In tracing AD, this optimization happens automatically, since traversal along data dependencies cannot reach irrelevant variables. To achieve the same goal, source transformation tools must perform a more involved activity analysis [Bischof et al. 1992], which is a data-flow analysis that conservatively propagates derivative liveness through the control flow graph until this process reaches a fixed point.

Four notable source transformation tools are Tapenade [Hasc#ot et al. 2013], StalinV [Pearlmutter and Siskind 2008], Zygote [Innes 2019], and Enzyme [Moses and Churavy 2020; Moses et al. 2021]. Tapenade uses sophisticated data-flow analyses to generate optimized derivatives of scalar C or Fortran programs involving pointers and array mutation. StalinV operates on λ-calculus IR and performs source-to-source transformations using runtime reflection. The callee-derives approach in their work shares some of the motivation of Dr.Jit’s specialization of polymorphic derivatives. Zygote operates on typed IR of the Julia language and composes higher-level adjoints, while Enzyme differentiates code following lowering to LLVM IR. As with optimizing compilers, the IR’s abstraction level can facilitate or exacerbate certain tasks, hence the suitability of these tools depends nature of the problem to be differentiated.

Hybrid systems. Tracing and source transformation are merely the extreme points of a large space of hybrid techniques with interesting trade-offs. For example, PyTorch [2017] programs can be traced into a domain-specific language for subsequent compilation, which removes tracing overheads and enables optimizations. JAX [Bradbury et al. 2018] traces functions into an expressive IR that can be differentiated or parallelized. Compilation proceeds via lowering into XLA [Google 2017] that performs further tensorial optimizations. Dr.Jit is also a hybrid in this classification: it ingests computation using tracing but generates kernels that preserve the control flow (loops, subroutines) of the original program. Its output thus resembles that of a source transformation–based tool.

Functional languages. Following Elliot’s [2018] formalization of backpropagation using category theory and continuation passing, multiple works have proposed languages that combine the expressiveness of higher-order functional programming with the efficiency of imperative languages. This includes the previously mentioned StalinV [Pearlmutter and Siskind 2008] and languages like dF [Shaikhha et al. 2019] and Dex [Paszke et al. 2021]. Dr.Jit adopts an imperative approach to interoperate with C++ and Python. That said, the authors find combinations of PBDR with differentiable functional programming promising and worthy of future exploration.

2.3 Graphics and compilers

Graphics applications have a near-insatiable thirst for floating point operations, usually operating at the limits of what is possible on present hardware. Their needs are often not well-served by existing programming languages and compilers, which has motivated specialized systems with broad impact. For example, the RSL shading language [Hanrahan and Lawson 1990] pioneered the use of programmability in a previously mostly static graphics stack, using JIT-compilation and scene-specific specialization analogous to similar steps in Dr.Jit. Following increased programmability of GPUs through shading languages like Cg [Mark et al. 2003], the Brook [Buck et al. 2004] project was instrumental in repurposing GPUs for general-purpose computation ("GPGPU").

SMASH [McCool et al. 2002] introduced the idea of metaprogramming shaders by tracing arithmetic in a host language, and Sh [McCool et al. 2004] further specialized generated code. Spark [Foley and Hanrahan 2011] raised the level of abstraction by disentangling features from the underlying GPU pipeline stages, and Slang [He et al. 2018] modularized shader development by separating aspects like lighting, materials, and camera transformations. The system parses high-level C++-style code and specializes the resulting IR before emitting low-level shader code for various platforms.

Halide [Ragan-Kelley et al. 2012] simplifies the design of image processing pipelines by separating computation and schedule, which encompasses placement, parallelization, vectorization, and blocking. A differentiable extension [Li et al. 2018b] enables end-to-end optimization of image processing pipelines. The predictable structure of the underlying stencils enables highly effective optimizations like scatter-gather conversion during differentiation. Taichi [Hu et al. 2019] is a general-purpose parallel programming language with an emphasis on dynamical simulation and sparse data structures. Diff-Taichi [Hu et al. 2020] endows Taichi with an efficient differentiation operator that preserves the megakernel structure of the simulation code. While DiffTaichi, Halide, and Dr.Jit each target different types of programs, they share a common focus on optimizing memory access patterns when a computation is differentiated.

Given the favorable discussion of megakernels in Section 1 we should also review their disadvantages, which were studied by Laine et al. [2013]: megakernels tend to contain large amounts of code connected via branch instructions. Branch divergence can then reduce the effectiveness of vectorized program execution, while high register usage interferes with the latency-hiding mechanism of GPUs. Dr.Jit can be used to explore the impact of kernel size...
on performance: besides producing megakernels, it is also able to emit different granularities of wavefronts, which refers to a sequence of smaller kernels with intense data exchange through device memory. Laine et al. [2013] compared both extremes and found wavefront execution to be the superior execution model. However, nearly a decade and four hardware generations later, our experiments indicate that the overall balance seems to have shifted back towards megakernels, at least for the types of workloads investigated in this article. We expect that there will still be a point where a megakernel is simply too large to run reasonably on a GPU.

3 JUST-IN-TIME COMPIlATION

We now turn to Dr.Jit’s computational substrate and postpone most discussion of differentiation to Section 4. Any use of the term tracing in this section thus refers to capturing computation for later compilation and is unrelated to AD. The term is also not to be confused with ray tracing, which refers to a specific geometric intersection operation that can appear within a trace.

Figure 3 illustrates the high-level pipeline: following tracing, kernel assembly generates IR requiring backend compilation into machine code. In typical PBDR usage, this is only necessary during the first gradient descent step. The final pipeline stage launches the kernel for asynchronous execution on the CPU (via a thread pool) or the GPU (via CUDA/ OptiX) so that tracing and kernel execution can continue in parallel. OptiX [Parker et al. 2010] is a domain-specific compiler that accelerates ray tracing on NVIDIA GPUs, and which offloads these operations onto dedicated hardware cores if available.

3.1 Running example

We will now walk through the implementation of a simple ambient occlusion integrator and use this as an opportunity to introduce major system components, starting with low-level details and then progressively zooming out. Our program begins by importing Dr.Jit along with a floating point and an integer type.

```python
import drjit as dr
from drjit.cuda import Float, UInt32
```

While types like Float and UInt32 are suggestive of an internal scalar representation, they represent dynamically sized 1D arrays.

Instances of them are best thought of as a scalar variable declaration within a loop of the form "for index in range(..)", where index will usually refer to the Monte Carlo sample being computed.

Operations involving these capitalized types become part of the trace, while builtin Python types (float, int) and control flow statements are invisible to Dr.Jit. In other words, this is a metaprogram, whose execution determines what computation will eventually take place on the target device.

The next line creates a Float variable containing 1024 evenly spaced numbers covering the interval [-1, 1] that we will shortly use to generate primary camera rays.

```
x = dr.linspace(Float, -1, 1, num=1024)
```

The trace of this expression consists of five variables: the aforementioned loop index variable, an int-to-float cast, and a fused multiply-add (FMA) referencing two literal constants shown in green:

```
1  index ->  u32* f32  ->  fma -x  
2  -1.0  2/1023
```

A variable trace usually contains at least one use of the index variable, otherwise it is uniform. Each temporary/variable is identified by a number (x, e.g., points to #5). An associative data structure maps this index to a record describing the operation and its dependencies.

The next step of our example creates another 1D array and invokes `dr.meshgrid` to expand both arrays into 2D grid coordinates.

```
y = dr.linspace(Float, -1, 1, num=1024)
x, y = dr.meshgrid(x, y)
```

Several points are worthy of note: the computation of the y variable is of course redundant. Dr.Jit detects this using local value numbering; an optimization that uses the variable details (operation type, input dependencies) as key to query an auxiliary inverse version of the associative mapping. If an equivalent variable exists, it will be reused. The system also performs constant folding/propagation and basic algebraic simplifications (e.g. `fma(a, b, 0) = a*b; ax1=a`) while tracing. These optimizations are not important in our example, but they are effective in combination with AD that tends to generate many operations of this type. Both steps are cheap to do while tracing, and they reduce the size of the IR passed to OptiX/LLVM.

The function `dr.meshgrid()` computes row and column indices and then calls `dr.gather()` to read from the input arrays x and y.

1The shown source code fragments use the Python language, but the system is also usable via a near-identical C++ API. JIT compilation and differentiation usually trace combinations of code written in both languages. Operations like `linspace` and `meshgrid` imitate their eponymous counterparts in other array programming tools.
Both represent computation that has not occurred yet, and `dr::gather` is thus able to perform the indexing operation symbolically by cloning their graph representation and rewriting the `index` variable. Along with further application of the previously mentioned optimizations (value numbering, constant propagation), this produces the following combined trace:

```
[7x11]1024
[7x11]1024
[19x72]data
[22x10]fma
[33x39]...
[33x86]...
[36x45]ray
[51x537]Accessing array contents triggers evaluation via `dr::eval(...)`, which compiles and launches a fused kernel that commits the requested variables(s) to device memory. Further use of `x` references the stored version, hence parts of the trace that are no longer needed expire.

```

Suppose that the example takes place in an interactive session, and the user wishes to check the contents of the `x` variable at this point.

```
>>> print(x)
[-1.0, -0.998, -0.996, ... 1048576 skipped, 0.996, 0.998, 1.0]
```

We are now almost ready to process a set of primary rays, using the 2D grid as image-space offsets in an orthographic camera model:

```
from mitsuba import Ray3f, Point3f, Vector3f, load_file
ray = Ray3f(x, y, 0, deVector3f(0, 0, 1))
```

Mitsuba 3 uses Dr.JIT-provided types throughout all interfaces; fixed-size arrays like `Point3f` simply wrap several JIT variables that become part of the generated program. The ray tracing operation requires further elaboration: its implementation looks as follows:

```
class Scene:  # (most definitions omitted) ...
def ray_intersect(self, ray: Ray3f) -> SurfaceInteraction3f:
    pi = self.shape.compute_surface_interaction(ray)
    return pi
```

It first finds a *preliminary intersection* comprised of the intersected shape, primitive ID, ray depth and UV coordinates (our example is simplified here to hide complexities like instancing). The second step invokes a method on the intersected shape (`.shape`) so that it can refine this preliminary intersection into a detailed `SurfaceInteraction3f` type describing the differential geometry at the intersection point. Within **Mitsuba 3**, this refined intersection maps to a large number of variables (41-45 depending on the variant of the renderer). Following these last steps, the trace looks as follows (repeated parts on the left are omitted):

```
data 0.0
-1.0
1.0
```

The yellow boxes represent complex operations with custom code generation hooks. During kernel assembly, `intersect` produces IR that invokes a ray tracing accelerator (Embree [Wald et al. 2014] on the CPU and OptiX [Parker et al. 2010] on the GPU).

The `.shape` member of the preliminary intersection refers to an (as of yet unevaluated) array of `1024 × 1024` pointers to arbitrary shape implementations. The yellow operation labeled “vcall” represents the dynamic dispatch step (*virtual function call* in C++ terminology) needed to resolve the polymorphic nature of this operation. Dr.JIT does so by tracing *all reachable* method implementations (scene objects register themselves with Dr.JIT to enable this). The operation can thus be interpreted as a large-scale demultiplexer-multiplexer that routes arguments and return values to/from instances. During kernel assembly, it produces IR performing an indirect branch to one of multiple subroutines (in other words, the indirection is preserved in the generated program).

Several inefficiencies may be apparent to the reader at this point; we will soon explain how they are resolved. The final part of our example traces 128 ambient occlusion rays starting at the intersected position. For this, we require a random number generator and a looping mechanism. While a standard Python `for` loop works, it would unroll the loop body 128 times and produce an unnecessarily large trace. As before, it is desirable that tracing preserves the structure of the input program. We instead instantiate a Dr.JIT Loop object along with a pseudorandom number generator (`PCG32`), a counter (1), and a variable representing the final result.

```
from drjit.cuda import Loop, PCG32
rng = PCG32(size=1024 * 1024)
i, result = UInt32(0), Float(0)
loop = Loop(state=lambda: (rng, i, result))
```

This loop runs for only one iteration (the condition `loop(...)` returns `False` in the second round). This suffices to capture the effects of an individual loop iteration, which is all that is needed to wire2 it into the generated kernel. A downside of our approach for embedding tracing into a host language is that Dr.JIT must know about the loop’s *state variables*, which refers to variables that are modified in the body and either accessed in subsequent iteration or following termination. They are specified using a lambda function, which our implementation invokes before and after the loop to catch redefinitions of Python variables. The trace now looks as follows (`.rng` seeding omitted for simplicity).

```
data 0.0
-1.0
1.0
```

The specific loop of our example samples the cosine-weighted hemisphere and traces shadow rays.

2This involves the insertion of basic block boundaries and Phi nodes into the generated IR, which is in static single assignment (SSA) form.
that build data structures like photon maps or irradiance caches. Specifically for these methods, we did not study methods that build data structures like photon maps or irradiance caches.

Following this example, we are in a better position to review high-level ideas of Dr.Jit and contrast it with other approaches.

1. Dr.Jit is principally a framework for tracing large amounts of embarrassingly parallel computation. Tracing constitutes Dr.Jit’s only mode of operation and takes place all the time. Tracing must be highly efficient, since an individual trace is expected to be executed at scale because a single call can produce a large amount of output.

Fig. 4. When Dr.Jit encounters a polymorphic method call, it traces the implementation of all reachable instances and performs multiple optimizations. In the example shown above, a call with inputs \((i_1, i_2, i_3)\) returns outputs \((o_1, o_2, o_3)\). The variable \(i_1\) is a constant literal, and the surrounding program only references outputs \(o_2\) and \(o_3\). (a) Dr.Jit propagates the constant into the captured sub-traces, while at the same time eliminating dead code across the call boundary. (b) In this example, all sub-traces perform the same computation to produce \(o_2\), and the computation is subsequently devirtualized, i.e., moved out of the call. (c) Finally, two of the sub-traces are found to be identical and only produce a single function definition during kernel assembly.

Finally, we reshape and store the result as an image (right). It is at this point that the actual computation takes place within a megakernel containing all steps except for \(x\) that was previously evaluated.

```
while loop(si.is_valid()) & (i < 128):
    # Sample from cosine-weighted hemisphere
    sin_phi, cos_phi = dr.sincos(rng.next_float() * dr.two_pi)
    sin_theta_2 = rng.next_float()
    wo_local = Vector3f(cos_phi * dr.sqr(sin_theta_2),
                        sin_phi * dr.sqr(sin_theta_2),
                        dr.sqrt(1 - sin_theta_2))
    # Rotate sample into shading frame and spawn ray with length 1
    ray_2 = si.spawn(ray(si.sh_frame.to_world(wo_local)))
    ray_2.maxt = 1
    # Count unoccluded rays and increase the iteration count
    result["scene ray test(ray_2)"] += 1
    i += 1
```

```
from mitsuba import Bitmap
from drjit.cuda import TensorXf
# Arbitrary-rank float32 tensor
# Reshape/scale
from mitsuba import Bitmap
# Arbitrary-rank float32 tensor

TensorXf(result / 128, shape=(1024, 1024))
```

3.2 Discussion

Following this example, we are in a better position to review high-level ideas of Dr.Jit and contrast it with other approaches.

1. Dr.Jit is principally a framework for tracing large amounts of embarrassingly parallel computation. Tracing constitutes Dr.Jit’s only mode of operation and takes place all the time. Tracing must be highly efficient, since an individual differentiation step can create millions of temporary JIT variables.

2. Dr.Jit captures the rendering process without intermediate evaluation, returning the image in the form of a trace describing the computation needed to produce it. This ultimately enables megakernel compilation and is somewhat specific to stateless Monte Carlo methods. We did not study methods that build data structures like photon maps or irradiance caches.

3. Tracing preserves control flow like loops and polymorphism. Backend compilation time in OptiX and LLVM tends to grow super-linearly with kernel size. Preserving control flow avoids the creation of an immensely large unrolled program that breaks the backend.

4. Dynamic compilation enables aggressive specialization and simplification of the program representation. We will shortly see how a complete trace enables scene-specific specialization and interprocedural optimization.

Array programming. Dr.Jit shares similarities with array programming frameworks like PyTorch, TensorFlow, and JAX that are commonly used for differentiable programming. Like Dr.Jit, some of them can trace loops and indirect calls and compile them into fused kernels. We implemented a small renderer using JAX [Bradbury et al. 2018] and XLA [Google 2017] to run comparisons but were unable to obtain useful data, as compilation timed out on nontrivial examples.

Details of how loops and polymorphic operations are traced can greatly impact compilation and runtime performance, and we further investigated those two steps in microbenchmarks shown in Appendix A. Our take-away message from these experiments was that the large amount of arithmetic in PBDR workloads is unusual in the array programming setting designed around neural computations built from comparatively few arithmetically intensive steps. Rich ML-centric IR and tensorial optimizations can be highly effective in ML workloads, but they are costly when used to render images.

3.3 Optimizations

Dr.Jit performs optimizations to improve code generation. This may appear counter-intuitive: LLVM and OptiX are themselves sophisticated optimizing compilers, hence standard optimization passes would be subsumed by the backend compilation step. We focus on an important exception: dynamic dispatch presents an opaque boundary that breaks interprocedural optimizations in LLVM/OptiX.

Recall the large intersection data structure in our running example, of which only a few fields were used. Since we are already JIT-compiling, why not generate specialized code that omits unreferenced fields along with the computation needed to produce them?

This train of thought leads to a set of global optimizations illustrated in Figure 4: first, we propagate constant literals into the call, where it may trigger simplifications (this is especially effective in
differentiated programs that tend to propagate many zero-valued derivatives). Removing unrefereced inputs removes unrefereced inputs, which may further cascade into the surrounding program. We also devirtualize computation that is identical in all sub-traces.

These optimizations are easily performed while tracing: constant propagation happens automatically, dead code elimination follows from variable reference counting, and deduplication builds on value numbering: if all sub-traces output a variable with the same ID, it can be moved out of the call. Finally, identical traces can be collapsed into a single subroutine. This optimization is important for rendering, where scenes often contain thousands of objects of the same type.

However, type equivalence does not imply that two instances will always perform the same sequence of operations. Consider an ubershader material like Disney's Principled BSDF [Burley 2012, 2013] that could expand into opaque or thin versions with different subsets of the underlying ~11 parameters active in each instance. Textured parameters could be procedural, driven by mesh attributes, 2D bitmaps or 3D volumes with various wrapping or filtering modes. In a spectral renderer, this could furthermore involve custom spectral profiles or upsampling steps. A subset of these parameters may require derivative tracking, while others are static. We make no assumptions and trace every reachable instance, which generally produces many identical functions that can then be safely merged.

3.4 Additional features

Vectorization. The LLVM backend of Dr.Jit generates vectorized IR targeting the SIMD instruction set of the host. This means that operations like loops, function calls, and ray tracing processing of 4-16 elements at a time. Function calls may require several iterations to handle all elements in the presence of divergence. Dr.Jit automatically performs such transformations, while adding masking similar to the ISPC compiler [Pharr and Mark 2012]. Function deduplication discussed in Section 3.3 is important for vectorized execution on both CPUs and GPUs because it can significantly reduce divergence.

Closure generation. Instance-specific attributes like the roughness parameter of a BRDF model require special handling during tracing. Dr.Jit automatically detects such implicit dependences and adds them to a function closure. Appendix B provides details on this.

Loop optimization. Besides polymorphism-related optimizations, Dr.Jit also optimizes loop constructs by removing invariant or unrefereced state variables. LLVM and OptiX can in principle perform similar optimizations, but polymorphism within loops can sometimes impede them. We leverage Dr.Jit’s global view across loops and indirections to remove redundancies.

Wavefront-style evaluation. Several flags control the tracing behavior of Dr.Jit: for example, it can either trace loops or execute them using a sequence of wavefront-style kernels. Similarly, it can trace polymorphic function calls or group the wavefront by instance and launch a maximally coherent kernel per group. Besides full megakernel- or full wavefront-style evaluation resembling Enoki [Jakob 2019], this provides an intermediate configuration with wavefront loops and traced calls that can be surprisingly effective.

Side effects. Several of Dr.Jit’s built-in operations like scatter operations and atomic scatter-reductions mutate existing arrays. Read access or arithmetic involving variables marked as being affected by queued side effects trigger a kernel launch to materialize them.

3.5 Results

We now turn to a first set of results that examine primal rendering performance, comparing Dr.Jit to two open source renderers with wavefront-style evaluation: Mitsuba 2 [Nimier-David et al. 2019] using the Enoki library [Jakob 2019], and PBRT 4 [Pharr et al. 2020].

The three benchmark scenes are shown in Figure 7: Staircase contains 749 shapes and 24 BSDFs and simulates low-order scattering, while Living room uses longer paths with 12 interactions. Glass of water simulates up to 32 dielectric refractions and reflections. Good performance in these benchmarks requires efficient handling of loops for interreflection and dynamic dispatch to many scene objects.

Experiments throughout this article were performed on an AMD Ryzen Threadripper 3990X server (64+64 virtualized cores, 128 GiB RAM) with an NVIDIA RTX A6000 GPU (45.6 GiB RAM). The vendor-specified thermal design power of CPU (280W) and GPU (300W) are roughly matched to enable a fair comparison between these two very different processor architectures. On the software side, we use Linux kernel 5.13, LLVM 10, and NVIDIA driver 510 with a vendor-provided fix for a performance regression found during development (this fix will be part of future driver releases). We follow standard benchmarking practices like disabling mitigations for side-channel attacks, reporting the median of multiple (5) runs, and pre-allocating 2 MiB huge pages used by Embree [Wald et al. 2014] and Dr.Jit.

Three groups of columns in Figure 5 contrast statically compiled one-ray-at-a-time rendering (scalar C++ code) with execution via LLVM and OptiX. Dr.Jit results are presented in both wavefront and megakernel mode. Our system compiles a specialized megakernel.
(or series of smaller kernels) for each scene, which incurs a one-time overhead represented by hatched bars; the solid portion below indicates performance once the system is warmed up. We applied minor optimization to Mitsuba 3 while incorporating Dr.Jit, such as marking primary rays as coherent in Embree. These also benefit the renderer’s statically compiled scalar mode, which we represent using the green Dr.Jit bar in the ‘Scalar (CPU)’ column.

Dr.Jit performance compares favorably, achieving geometric mean speedups of 3.70× (vs. Mitsuba 2) and 2.14× (vs. PBRT 4) on the GPU. On the CPU, vectorized LLVM megakernels produced by our system outperform scalar rendering in all cases.

Compilation into wavefronts produces programs that must repeatedly read and write vast amounts of data, imposing a burden on the processor’s memory subsystem. Difference in memory bandwidth on the CPU (~95 GiB/s) and GPU (~715 GiB/s) as well as latency hiding-capabilities in the latter lead to marked differences between architectures in this case. Wavefront-style execution reduces GPU performance by a factor of 2.0 – 7.7×, while the same experiment on the CPU can increase cost by a factor of more than 100×.

Figure 6 investigates the effect of individual optimizations starting from a wavefront-style baseline resembling the operation of the Enoki library (column a). Memory usage is significant in this configuration (bottom row). While this could be reduced by launching many smaller wavefronts, it would not address the fundamental issue that a large amount of data will need to be read and written.

A high level observation is that tracing and kernel assembly (orange and blue bar regions) only constitute a small portion of the total compilation time. The precise amount tends to be lower when compiling megakernels and higher for wavefronts requiring multiple rounds of tracing and assembly. Backend compilation time to transform IR into machine code can be significant (longer than the kernel execution itself), which can make the system unsuitable for certain use cases and emphasizes the importance of caching mechanisms.

Mapping polymorphic function calls to subroutines in (b) drastically reduces runtime on the CPU while increasing compilation time on both backends; subroutine deduplication in (c) reverts most of the growth in compilation time and also gives a speed boost thanks to reduced divergence under vectorized execution.

Removing unreferenced computation, arguments, and return values from polymorphic method calls in (d) has a surprisingly large effect in the OptiX backend, where it improves performance by an average factor of 2.5×, while having essentially no impact on the CPU. Modern superscalar CPUs can absorb a certain amount of redundant computation by issuing multiple instructions per clock cycle. We speculate that these architectural features along with the lower cost of data exchange through the stack could be responsible.
The following are notable limitations of the tracing approach.

Dr.Jitr can trace dynamic dispatch to functions that become bigger and slower over time. This happens because we never asked the system to materialize the RNG state into data; all RNG updates from prior rendering steps are still part of the trace and spill into the current kernel. Calling \texttt{dr.eval()} solves this problem, though the need for this step can be non-intuitive to new users.

Performing GPU texture lookups using hardware texture mapping units in (i) yields small but measurable runtime improvements on the order of 1% when compared to software-based interpolation. Compilation time improves by up to 30% when the scene contains many textured materials (e.g., Staircase), since IR operations related to wrapping and interpolation can be removed.

3.6 Limitations

The following are notable limitations of the tracing approach.

The need to evaluate. Suppose we wanted to run the ambient occlusion integrator multiple times to produce uncorrelated renderings. A naïve attempt to do so by reusing the pseudorandom number \texttt{rng} could lead to a problem where caching breaks down, requiring repeated backend compilation of kernels that become bigger and slower over time. This happens because we never asked the system to materialize the RNG state into data; all RNG updates from prior rendering steps are still part of the trace and spill into the current kernel. Calling \texttt{dr.eval()} solves this problem, though the need for this step can be non-intuitive to new users.

Recursion. Dr.Jitr can trace dynamic dispatch to functions that themselves perform dynamic dispatch, which is, e.g., needed to handle object transformations involving instanced geometry. Cycles including self-recursive calls are not permitted, as the system would then trace the same code repeatedly without knowing when to stop.

Debugging. We provide two ways to investigate the behavior of a program: the user can set \texttt{dr.printf()} to wavefront-style evaluation (Section 3.4), set breakpoints, step through the program, and investigate variable contents. Megakernel compilation is less flexible: the only available option in this case is to print from the device via \texttt{dr.printf()} with the output is produced when the kernel runs later. More work will be needed to develop better debugging primitives for this unusual way of performing computation.

4 DIFFERENTIATION

Following this presentation of Dr.Jitr’s computational foundation, we now turn to differentiation starting with a review of PBDR techniques and ways in which they constrain the system.

4.1 Physically Based Differentiable Rendering

A typical rendering algorithm like path tracing [Kajiya 1986] propagates \textit{radiance} from light sources to the sensor. To do so, it loops over consecutive path vertices starting from the sensor. Many iterations might be necessary when the scene contains scattering media.

Such loops are unfortunately a nuisance during differentiation, as each iteration generates intermediate state that must be reconstituted to compute reverse-mode derivatives (Section 2.2). In the case of a path tracer, millions of Monte Carlo samples will run the loop in parallel for an unpredictable number of iterations, hence large quantities of memory would need to be provisioned conservatively to store the resulting intermediate state. In general, we find that the automatic derivative of a loop is almost never satisfactory; the user should instead contribute domain-specific knowledge to implement an equivalent and more efficient custom\textit{adjoint}.

Radiative Backpropagation (RB) [Nimier-David et al. 2020] is such a custom adjoint. Using physical reciprocity, it replaces the derivative of the simulation with an equivalent simulation of \textit{differential radiation (“adjoint radiance”)}, removing the need to store loop state. Differentiating the image loss initially yields adjoint radiance in image space, where it describes how pixels in the rendered image should change to reduce the loss. Like a video projector, the camera then emits this signed radiation into the scene, where it scatters just like normal light. In contrast to primal rendering that queries the scene representation using \textit{reads}, RB is a \textit{write-heavy} method: whenever adjoint radiance encounters a surface with differentiable parameters, the method accumulates a contribution into the local parameter gradient, for example to optimize α below.

The derivative with respect to α is also proportional to the amount of incident radiance (a surface in darkness generates no gradients). This illustrates the main issue with RB: it requires an intertwined simulation of both adjoint radiance and primal radiance, which leads to a costly algorithm with quadratic runtime complexity.

Path Replay Backpropagation (PRB) [Vicini et al. 2021] fixes this problem using a two-pass approach. Its first pass generates a set of Monte Carlo samples and stores data consumed by a subsequent pass.
Fig. 8. The anatomy of a recent physically based differentiable rendering method. This diagram illustrates a partition of the major components of Path Replay Backpropagation (PRB) [Vicini et al. 2021] into a set of three self-contained megakernels that each solve a Monte Carlo integration problem. Megakernel #1 is a standard path tracer that dynamically dispatches function calls to scene objects (shapes, emitters, materials, etc.) with an implicit dependence on scene parameters. The path tracer uses an image reconstruction filter to scatter weighted samples values into an output buffer with subsequent weight division [Pharr et al. 2020], which produces a primal rendering that is passed into a loss function to quantify the quality of the current iterate. Meanwhile, a second path tracing megakernel performs the same computation once more with a different pseudorandom seed, providing a per-sample state array to a final adjoint megakernel #3. This kernel contains adjoint versions of all steps and is responsible for accumulating scene parameter gradients.

This second pass regenerates the same set of samples, exploiting the precomputed data and arithmetic invertibility to recover the incident radiance at every vertex. With this information, the desired gradients can be accumulated. A complete PRB optimization step actually computes one further decorrelated [Gkioulekas et al. 2016] primal rendering that is passed into a loss function to quantify the quality of the current iterate. Meanwhile, a second path tracing megakernel performs the same computation once more with a different pseudorandom seed, providing a per-sample state array to a final adjoint megakernel #3. This kernel contains adjoint versions of all steps and is responsible for accumulating scene parameter gradients.

There are other important problems to consider besides efficiency. Rendering algorithms evaluate integrals containing visibility-related discontinuities. When differentiated parameters affect visibility (and thereby the position of the discontinuities), the resulting derivatives tend to be severely biased, which breaks shape reconstruction unless special precautions are taken. Figure 9 visualizes bias in a simple forward mode example. Techniques to remove bias include edge sampling [Li et al. 2018a] reparameterizations [Loubet et al. 2019; Bangaru et al. 2020], and path space sampling [Zhang et al. 2020].

Finally, differentiation changes the integrals computed by the simulation. Sampling strategies designed for a primal integrand may perform poorly when applied to its derivative, in which case derivative-aware strategies may be necessary [Zeltner et al. 2021].

Our goal in the remainder of this paper is to establish a solid foundation for these and future PBDR methods. We must, however, limit the scope somewhat and therefore mainly focus on the example of a reparameterized path replay backpropagation integrator.

4.2 Objectives
A central tenet of Sections 1 and 3 was that the system should never partition Monte Carlo integration across multiple kernels to avoid costly inter-kernel communication. Tracing also needed to
A caveat worth noting here is that Dr.Jit does not free the developer from thinking about subtle details of the differentiation process. It facilitates—but does not automate—the introduction of the previously mentioned physical and mathematical “reversibilities”.

The remainder of this section reviews tracing AD and explains how it can be adapted to address the stated challenges. Unless noted otherwise, subsequent use of the word trace will now refer to a (Wengert) tape, or computation graph that captures operations for subsequent derivative propagation.

4.3 Tracing with dynamic compilation

Section 2 introduced two high-level flavors of AD: tracing and source transformation. Dr.Jit lies somewhere in between: it ingests computation using tracing, but the combination with dynamic compilation and function-level differentiation produces output resembling that of source transformation AD.

Figure 10 shows a simple example of tracing-based AD. The tape associates every primal variable \(x \) with a differential version \(\delta x \) and records inter-variable dependencies. Subsequent tape traversal computes the differentiable variables, which produces a flurry of operations referencing primal program state (Figure 10 right). A subtle but important detail is that this derivative-related computation is itself traced by the underlying JIT compiler. Said overly dramatically, differentiation destroys the AD data structures, which leaves a residue of ordinary computation. This residue is traced by the JIT-compiler one level below so that it can run as part of a (mega-) kernel at some later point. The actual destruction of the tape turns out to be immaterial in this process; it is often useful to retain it when multiple AD traversals are needed. This approach is not a contribution of Dr.Jit and also underlies other hybrid AD systems, e.g., CppADCodeGen [Leal and Bell 2017].

It is interesting to note that this combined system supports checkpointing without having put any intentional effort into realizing such a feature. Consider an unrolled loop with intermediate evaluation:

```python
for i in range(1000):
    data = f(data) # 'f' represents a potentially complex
dr.eval(data) # transformation of 'data'
dr.backward(data) # Now, backpropagate through all steps
```
The AD layer will reference intermediate steps and temporaries produced by the function \(f \) to enable subsequent differentiation, and these must be recomputed. The JIT layer knows how to compute these needed variables, and it will do so from the last evaluation point that therefore takes the role of a checkpoint. Checkpointing is not ideal for PBDR workloads due to the size of even a small number checkpoints, though it does help when differentiating rendering techniques that have not been adapted for efficient differentiation.

4.4 Custom adjoints

Like other AD systems, Dr.Jit supports functions with user-provided forward-, and reverse-mode derivatives ("custom adjoints"), by extending an interface named `CustomOp`. When an AD traversal encounters a `CustomOp` on the tape, it will invoke its `forward()` or `backward()` callbacks to convert function input derivatives into output derivatives, or vice versa. In contrast to other AD systems that consider explicit function arguments and return values, Dr.Jit also tracks implicit inputs or outputs. This refers to dependencies on global state that only become apparent while running the function. Tracking implicit reads and writes ensures that the global flow of derivatives is correctly represented and will be useful shortly.

4.5 Differentiating polymorphism

With this infrastructure in place, we are ready to discuss polymorphism. We will consider the following method call, where `obj` refers to a Dr.Jit array of instances that implement the function `func`.

```python
out = obj.func(arg_1, arg_2, ..)
```

The derivative of such a polymorphic method call, is another polymorphic method call to JVP and VJP (Section 2.2) versions of the original set of functions. Dr.Jit generates these dynamically as needed. To detect this need, it wraps use of polymorphism like the example above into a dynamically generated `CustomOp`. Suppose that the `CustomOp` `backward()` callback is now invoked during an AD traversal, which indicates that the system needs to propagate `dr.grad(out)` to `dr.grad(arg_1)`, `dr.grad(arg_2)`, etc.

To accomplish this, the AD layer dynamically defines a VJP per method, which is simply a placeholder that calls `func` a second time, with recursive usage of AD to propagate and extract derivatives.

```python
def func_vjp(grad_out, arg_1, arg_2, ..):
  dr.enable_grad(arg_1, arg_2, ..)
  result = func(arg_1, arg_2, ..)
  dr.set_grad(result, grad_out)
  dr.backward(result)
  return dr.grad(arg_1), dr.grad(arg_2), ..
```

The AD layer then issues a polymorphic method call to these newly defined functions. To realize this method call, the JIT layer traces each possible target, which runs all VJP placeholder functions, materializing the differentiation into ordinary traced computation.

Optimizing polymorphic derivatives. Suppose that one of the return values of `obj.func()` does not carry derivatives. Dr.Jit will de-virtualize this zero-valued derivative following Section 3.3, enabling optimizations on the caller’s side. Zero-valued input derivatives are propagated into the call, simplifying call targets using constant propagation. The effect of these simple steps can be significant.

Automatic discovery of implicit dependences

Section 3.4 and Appendix B observed that the functions being differentiated are generally closures that implicitly depend on further variables from a surrounding environment, for example BRDF or texture parameters. This creates differentiable dependences that must be tracked by the AD system. Our system monitors variable accesses during the primal `CustomOp` evaluation and automatically registers implicit variable dependences with the previously discussed mechanism.

The reverse mode derivative of a method call with implicit reads will issue atomic scatter-reductions to update scene parameters gradients. This is not just an odd corner case; it constitutes the main way in which scene parameter gradients are generated.

4.6 Isolation boundaries

PRB performs a differentiable computation at every scattering interaction, followed by a backpropagation step. In the example below, \(L_i, L_r \) and \(\theta_L \) refer to incident, reflected, and adjoint radiance.

```python
while loop(depth < max_depth):
  ... Compute surface interaction 'si'...
  lr = Li * si.bsdf().eval(si, wo) # Reflected radiance from 'wo'
  dr.backward(0L * lr) # Backpropagate product
```

This differentiation step is likely part of a larger computation including preprocessing steps that must also be differentiated. Suppose that the that BSDF queries a texture, whose MIP levels were computed using successive reductions: the derivative of this process must upscale gradients back to the finest level, requiring multiple passes with intermediate data exchange, which cannot be done within the megakernel being compiled. Dr.Jit provides isolation boundaries (Figure 11) to postpone such problematic steps.

```python
with dr.isolate_grad():
  ... temporarily isolate outside world from AD traversals ...
```

Loops and polymorphic calls implicitly create an isolation boundary.
4.7 Reparameterizations

Parameters influencing the position and shape of scene geometry produce bias when differentiated (Figure 9) unless the Monte Carlo integrals within the rendering algorithm are reparameterized. Reparameterizations counteract parameter-dependent silhouette motion so that discontinuities are frozen when observed within spherical integrals. We expose reparameterizations through a CustomOp-based abstraction to isolate their specifics from the PBDR integrator. A reparameterized ray intersection then reduces to two lines:

```
ray.d, det = reparameterize(ray)
si = scene.ray_intersect(ray)
```

where det is Jacobian determinant of the change of variables.

Reparameterizations are a somewhat strange concept. During primal rendering, they reduce to the identity: \(\text{reparameterize()} \) simply returns the input ray direction along with a Jacobian determinant \(\delta \). When differentiated, they expand into intricate operations (Figure 12) that entail tracing auxiliary rays, weighting them, and using AD to scatter gradients into intersected shapes. Usage of AD is therefore recursive: a top-level render () function launches PRB (a CustomOp) when differentiated, which differentiates contributions in a traced loop and thereby evaluates the derivatives of various system operations including parameterizations (a CustomOp), which launches differentiable ray tracing operations (a CustomOp). Another level of recursion may take place in the presence of instancing.

```
render(scene)
.Printf Replay Backpropagation (CustomOp)
printf Reparameterization (CustomOp)
printf Shape_compute_surface_interaction (CustomOp)
```

4.8 Selective evaluation of partial derivatives

PRB consists of a loop with nested use of AD to compute light path derivatives one vertex at a time. Reparameterizations introduce an extra complication by perturbing the positions of these path vertices.

Moving \(x_i \) may change the BSDF at \(x_{i-1} \) and \(x_{i+1} \). A reparameterized integrator must account for this dependence when visiting the reparameterized vertex \(x_i \) to ensure that all partial derivative terms are present. However, separate differentiation of these two BSDF terms would also generate scene parameter derivatives, e.g., with respect to the albedo of \(x_{i-1} \) and \(x_{i+1} \). This is undesirable when those derivatives were already generated elsewhere: we require a way of only differentiating the dependence on the position of \(x_i \).

To address these and similar issues, Dr.Jit’s AD layer keeps track of a set of variables \(\Omega \) for which derivative tracking is currently enabled. Two additional AD scopes modify this set, by setting it to the empty set \(\emptyset \), its complement \(\emptyset^c \), or by adding and subtracting variables from the current set. A PBDR algorithm using these abstractions repeatedly enters and leaves scopes to control what derivative terms should be generated.

```
with dr.suspend_grad():
    # \( \Omega = \emptyset \)
with dr.resume_grad():
    # \( \Omega \) += \( \emptyset^c \)
# ... detached sampling steps ...
with dr.resume_grad(ray.d):
    # \( \Omega = \{ray.d\} \)
    # Only account for directional derivatives at \( \text{si.prev} \)
    # \( L = \text{li_prev} \times \text{si.prev.bsdfl().eval(si.prev, ray.d)} \)
    # ... other steps ...
with dr.resume_grad():
    # \( \Omega = \emptyset^c \)
    # \( \text{backward}(\delta L \times L) \) # Backpropagate through all terms
```

4.9 AD tape surgery

Implementations of PRB involve mysterious-looking steps like

```
Lr = bsdf_value_diff / bsdf_value
```

where the bsdf_value and bsdf_value_diff variables have the same value. What purpose do they serve?

In this example, \(Lr \) stores the reflected radiance obtained using a detached BSDF sampling strategy [Zeltner et al. 2021], which means that the process of importance sampling was not differentiated. To generate nonzero derivatives, the snippet above changes a factor within the expression in \(Lr \) (specifically, bsdf_value) so that it is attached, i.e., recomputed with AD-based derivative tracking.

A problem with this approach is that it introduces unnecessary extra computation in both primal and adjoint programs. We provide the dr.replace_grad(a, b) function that can be used to accomplish this goal more efficiently. It combines the primal value of ‘a’ with the AD trace of ‘b’, which changes the previous example to
We also use this feature to turn texture lookups performed using GPU texture mapping units (TMUs) into differentiable operations by attaching them to the AD graph of a software-based lookup.

4.10 Results

We now present results showcasing the combination of differentiation and dynamic compilation. We do not pursue complex application scenarios; our focus is purely on the structure of the computation and the performance of the system on such differential workloads.

Reverse-mode differentiation benchmark. Using the same set of scenes as before (staircase, living room, glass of water), we now use PRB to differentiate albedo values (scalar, textured) and emitters like the environment map in the living room scene. The information in Figure 13 only reflects the differential portion of a gradient step (i.e., phases #2 and #3 of the partition shown in Figure 8).

Many of the observations mirror our previous discussion of primal rendering in section 3.5. On the CPU, the benefit of megakernel-style evaluation continues to be dramatic, with speedups reaching $\sim 166 \times$ compared to the baseline ($\sim 142 \times$ in the primal benchmark).

One major change compared to the primal setting is that the computation must now evaluate the reverse-mode derivative of polymorphic calls. Consider the derivative of a function like BSDF evaluation that takes a large intersection record as input. Its derivative has even more inputs, and it additionally returns an output derivative for each primal input argument. Detecting and removing the resulting redundancies using global dead code elimination, constant propagation, and value numbering has a pronounced effect, with GPU speedups from this alone reaching $3.3 \times$ in the staircase scene.

The differential megakernels enabled by the methods presented in this article generally achieve the lowest tracing and kernel assembly time, lowest compilation time, and lowest runtime besides using a minimal amount of GPU memory. This last point becomes relevant when optimizing large scene representations (e.g. 3D volumes) that consume most of the available device memory.

Reparameterized PRB benchmark. Figure 14 repeats this experiment once more, using reparameterized PRB. The introduction of reparameterizations and steps needed to evaluate the derivatives of adjacent vertices (Section 4.8) now leads to very large programs compared to primal rendering or non-reparameterized methods.

This time, we optimize the vertex positions of all scene geometry\(^3\). Again, this experiment produces no surprises and shows the effectiveness of the various optimizations. An interesting contrast between Figures 13 and 14 is the staircase-like sequence of bars in

\(^3\)Derivatives will be biased in the glass of water scene containing dielectric objects. How to reparameterize through perfectly specular interfaces is an open research problem.
the latter, which clearly shows the benefit that each of the separate steps makes in both CUDA and especially the LLVM backend (which originally had a relatively flat profile in Figure 13). Once more, polymorphism-related optimizations are very important, with dead code elimination, value numbering, and constant propagation now producing a 6.6x speedup on the OptIX backend.

The improvements of the loop state optimizations on runtime performance are relatively modest (runtime improvements of a few percent in Figure 13) compared to other steps. We believe that this optimization may be more effective in methods using attached Monte Carlo sampling [Zeltner et al. 2021; Vicini et al. 2021], where large sets of derivatives must be exchanged between loop iterations.

Size reductions and size increases. Figure 15 provides another view of the effectiveness of optimizations besides compilation and runtime performance. It shows that the majority of function arguments and return values are removed regardless of the application. In reverse-mode (reparameterized) PRB, the number of removed function outputs goes up significantly, as many computed derivatives are added on top, a different behavior emerges: wavefront evaluation produces significant (> 30x) growth in the operation count, which our optimizations then stabilize to a factor of 7–8x.

Differentiating existing methods. Dr.Jit can also differentiate standard methods that have not been designed for this. Our last experiment demonstrates this using the builtin Mitsuba (volumetric) path
tracer and contrasts its behavior to PRB. The path tracer contains a loop that Dr.Jit handles using a checkpoint per scattering event (Section 4.3). Differentiable polymorphism can still be used within each iteration, reducing memory usage and communication costs. Columns (a) and (b) show the performance of such an approach.

Differentiating with checkpoints is very memory-intensive but has the advantage that only two Monte Carlo integration phases are needed in contrast to PRB’s three phases. Given a large supply of high-bandwidth memory (e.g. on the GPU), checkpointing can yield acceptable performance. The runtime cost for PRB’s two-stage approach is initially higher in (c) (wavefront loop with polymorphism) but outpaces checkpointing once compiled to a megakernel in (d). (These observations are consistent with the benchmarks reported in the original paper [Vicini et al. 2021].) Communication costs cause checkpointing to become less competitive when the differentiated computation involves long-running loops, as shown in the right example that differentiates a rendering with heterogeneous subsurface scattering and a maximum path length of 128 interactions.

5 CONCLUSION

Dr.Jit is a specialized compiler for physically based differentiable rendering algorithms, whose unique set of constraints makes their implementation using traditional means near-impossible. Dr.Jit can trace large object-oriented codebases with polymorphic indications, while providing fine-grained control over the differentiation process that is needed to exploit physical and mathematical symmetries.

Its combination of tracing at JIT and AD levels is harmonious: by tracking the flow of primal and differential quantities globally, Dr.Jit can specialize algorithms to the problem at hand, while discarding redundant computation. Its wavefront and megakernel implementations achieve excellent performance and run on diverse hardware.

Dr.Jit is not just meant to reproduce existing methods, but to provide a foundation for future research. We hope that it will lower the barrier to entry and enable new discoveries that push the boundaries of physically based differentiable rendering.

ACKNOWLEDGMENTS

The authors thank David Hart and the NVIDIA OptiX team for tracking down a performance regression. Matt Pharr provided helpful feedback on an early draft. This work was supported by the Swiss National Science Foundation (SNSF) as part of grant 200021_184629.

REFERENCES

<table>
<thead>
<tr>
<th></th>
<th>Primal</th>
<th>PRB</th>
<th>(ratio)</th>
</tr>
</thead>
<tbody>
<tr>
<td>wavefront</td>
<td>188.94</td>
<td>649.25</td>
<td>3.44</td>
</tr>
<tr>
<td>+ vcall rec.</td>
<td>216.28</td>
<td>969.53</td>
<td>4.48</td>
</tr>
<tr>
<td>+ vcall dedup.</td>
<td>141.21</td>
<td>654.49</td>
<td>4.63</td>
</tr>
<tr>
<td>+ vcall opt.</td>
<td>138.74</td>
<td>495.65</td>
<td>3.57</td>
</tr>
<tr>
<td>+ const prop.</td>
<td>127.13</td>
<td>448.29</td>
<td>3.53</td>
</tr>
<tr>
<td>+ value numb.</td>
<td>98.55</td>
<td>334.59</td>
<td>3.39</td>
</tr>
<tr>
<td>+ loop rec.</td>
<td>10.50</td>
<td>36.45</td>
<td>3.47</td>
</tr>
<tr>
<td>+ loop opt.</td>
<td>10.49</td>
<td>36.19</td>
<td>3.45</td>
</tr>
</tbody>
</table>

Fig. 16. Standard methods like path tracing can be differentiated within Dr.Jit but require checkpointing. This figure compares the behavior of such a memory-intensive approach to a specialized PBDR method. (a) Reverse-mode differentiation of a standard path tracer in wavefront mode. (b) Path tracer with optimized polymorphic calls. (c) Wavefront PRB with optimized polymorphic calls. (d) PRB compiled to a megakernel.

Table 1. Kernel sizes in thousands of IR operations averaged over the three benchmark scenes. This table provides numbers for primal rendering, reverse-mode (reparameterized) PRB, and the ratio relative to the primal column.

ACM Trans. Graph., Vol. 41, No. 4, Article 124. Publication date: July 2022.
ACM Trans. Graph., Vol. 41, No. 4, Article 124. Publication date: July 2022.

A RELATIONSHIP TO ARRAY PROGRAMMING

This section presents microbenchmarks comparing Dr.Jit to a representative array programming framework, specifically JAX [Bradbury et al. 2018]. JAX is powerful a frontend to the XLA compiler [Google 2017], which analyzes the graph structure of the desired computation, fusing sequences operations as part of a heuristically guided clustering process. This involves tensorial optimizations
Instance attributes present a subtle but important challenge that must be handled while tracing methods. Consider the following rudimentary implementation of a textured Phong BRDF:

```python
class Phong(mitsuba.BSDF):
    def __init__(self, albedo: TensorXf, exponent: Float):
        self.albedo = albedo  # Bitmap data (TensorXf)
        self.exponent = exponent  # Specularity (scalar Float)

    def eval(self, si: SurfaceInteraction3f, wo: Vector3f):
        # Convert UV into texel coordinates and perform a lookup
        resolution = Vector2i(self.albedo.shape)
        pos = dr.min(Vector2i(si.uv * resolution), resolution - 1)
        albedo = self.albedo[pos.y, pos.x]
        # Evaluate reflected direction and BRDF terms
        r = Vector3f(-si.wi.x, -si.wi.y, si.wi.z)
        return albedo * dr.inv_pi * dr.dot(r, wo) ** self.exponent
```

Evaluation accesses two attributes: `albedo`, which refers to a region in device memory, and a scalar exponent controlling specularity.

Tracing `eval()` must eventually produce a LLVM or PTX subroutine, whose signature is consistent with other implementations of this interface. It is logical that `explicit` function arguments like `si` and `wo` will be part of this interface, but how should implicit dependencies like `self.albedo` and `self.exponent` be handled? Each instance may reference different numbers and types of attributes, hence they cannot easily be turned into explicit parameters. It is also important to realize that "self" is purely a Python construct at this point that lacks a device-specific representation. A naive solution would be to embed the raw attribute values in the generated IR:

```python
def eval_impl_001(si_uv_x: float, si_uv_y: float, ...) -> float:
    albedo = 0xfffe2f00  # Pointer to device memory
    exponent = 10  # Hardcoded constant
    ... # ... implementation (this would be LLVM/PTX IR in practice) ...
```

This is undesirable because it would break function deduplication, causing every Phong instance to produce a unique subroutine.

Instead of merely tracing functions, the system must handle closures, which refers to pairings of functions with data from a surrounding environment. Tracing and kernel assembly should then separate code from data so that optimizations remain effective. DrJit transparently performs this optimization by detecting implicit variable dependencies while tracing function calls. Their contents are written into a contiguous array along with an auxiliary offset array that associates a closure data block with each instance.

DrJit launches a builtin asynchronous kernel that collects dependencies from various locations in device memory to build this consolidated data structure. The total amount of device memory needed for them is small—usually on the order of 10–100 KiB per method call.

\[\sum_{k=0}^{\infty} -1^k / (2k + 1)! \cdot x^{2k+1} \]

This is undesirable because it would break function deduplication, causing every Phong instance to produce a unique subroutine.

Instead of merely tracing functions, the system must handle closures, which refers to pairings of functions with data from a surrounding environment. Tracing and kernel assembly should then separate code from data so that optimizations remain effective. DrJit transparently performs this optimization by detecting implicit variable dependencies while tracing function calls. Their contents are written into a contiguous array along with an auxiliary offset array that associates a closure data block with each instance.

Large device arrays like textures or volumes are accessed indirectly. The closure data array records a pointer to them rather than the data itself, while scalars are directly copied to avoid an extra indirection.