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Abstract: This document provides additional derivations concerning integration and sampling of GGX distri-
bution on polygonal domains, building up to C++ fragments. We also include a brief background discussion of
off-center microfacet models.
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1 MASKING-SHADOWING TERMS FOR OFF-CENTER MICROFACET MODELS

Masking-shadowing terms in microfacet-based BSDFs ensure that these model are physically plausible and do
not create energy. They are generally computed from Smith’s monostatic terms G; (i) and G; (o) [Heitz 2014]. In
the case of off-center distributions of microfacet normals, that is, distributions whose average normal is different
from the geometric normal of the surface, Walter et al. [2015] and Dupuy [2015] define the masking-shadowing
term G; (k) for a direction k as the ratio between the projected macrosurface in the direction k and the total
projected area of front-facing microfacets:

. k - n|
Gi(k) = mm(l, fD(m) P dm). (1)

This definition does not require the definition of a mesosurface, which could be ill-defined for arbitrary distributions
of slopes. In the case of a translated distribution of microfacet normals in the space of slopes, Dupuy [2015]
showed that G; can be written as a function of the masking-shadowing term of the centered distribution:

k- n| [n, - n

Gi(k) = min (1, Glstd(k)) (2)

[n,, - k|
where n,, is the mean normal of the sheared microsurface and G g4 is the standard masking-shadowing term
for the centered distribution [Walter et al. 2007]. The clamping of shadowing terms to [0, 1] is missing in the
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Fig. 1. The projected area in a direction k of a microsurface with an off-center distri-
bution of slopes can be either larger (a) or smaller (b) than the projected area of the
macrosurface. The ratio of these projected areas defines a shadowing probability. In the
case (b), the shadowing term must be clamped to the interval [0,1] to ensure energy
conservation.
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Fig. 2. (a): A microsurface with a centered distribution of microfacet slopes. (b): The same microsurface deformed by a vertical
shear transformation resulting in a mean normal n,, that differs from the normal of the macrosurface, and a translated
distribution of microfacet slopes.

work of Dupuy [2015] and it is important since the projected macrosurface can exceed the total projected area of
microfacets in the direction k in some configurations, as illustrated in Fig. 1.

2 EQUIVALENCE OF THE ELLIPSOID NDF AND OFF-CENTER GGX DISTRIBUTIONS

Dupuy, Heitz et al. [2013] noted that applying a vertical shear deformation to a surface corresponds to a translation
of microfacet slopes, as shown in Fig. 2. The center of translated distributions corresponds to the slopes of a mean
normal also referred to as the normal of the mesosurface.

Walter et al. [2015] define their off-center normal distribution as the distribution of normals of an arbitrary
ellipsoid, which reduces to a centered GGX distribution when the ellipsoid is aligned with n as mentioned in
their article. In fact, the ellipsoid NDF is always equivalent to a translated GGX distribution in the space of slopes:
sheared ellipsoids are also ellipsoids, and arbitrary ellipsoids can be written as sheared axis-aligned ellipsoids,
which means that their distribution of slopes is exactly an off-center (potentially anisotropic) GGX distribution.
To our knowledge, the equivalence of the ellipsoid NDF and the model used by Dupuy, Heitz et al. has not been
mentioned before.
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3 INTEGRATING GGX DISTRIBUTIONS IN ARBITRARY POLYGONAL DOMAINS

Importance sampling triangles for Specular Next Event Estimation (SNEE) requires integrating GGX distributions
inside arbitrary triangular domains in slope space. We show that such integrals have a very simple closed-form
expression.

3.1 The GGX distribution of slopes
In slope space, the axis-aligned GGX distribution [Walter et al. 2007] with roughness parameters a, and a; is

given by
1

7
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P(x,y) = 3)

Integrals of this distribution over finite 2D domains can be reduced to integrals of the isotropic distribution with
roughness ay = a, = 1 using the linear change of variables

x=2

ax
(4)

y=2

@y

Indeed:
fP(x,y) dxdy = fP(Xax, Yay) axay dX dY (5)
1
= f ————— dXdY (6)
m(1+X2+Y?)

= f Pya(X,Y)dX dY, 7)

where ayay is the Jacobian determinant of the change of variables. We can easily verify that Py is a normalized
distribution by integrating in polar coordinates:

Palt) = ®)
ffpstd(r)rdrd9=2ﬂ'fmerZH[ﬁirz)0 =1. (9)

3.2 Integration in arbitrary polygonal domains

Let ny, n; and ny be the vertices of a 2D triangle A in the space of slopes, and let ng, n; and n, denote their
corresponding normals. We can obtain a geometric interpretation of the integral of Pyy over the triangular
domain A by writing the integral in the spherical domain. We use a relationship between slopes and polar angles

jmonf= ———— (10)

1+ m} + m}
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Fig. 3. We show that the integral of GGX distributions of slopes P in triangular domains
(a) have simple closed-form expressions. Arbitrary cases reduce to the case of an isotropic
distribution with unit roughness (b) through a simple linear transformation. Then, the
integral corresponds to the vertically-projected area of a spherical triangle (c), which
has a simple analytic expression. We also importance sample the distribution restricted
to triangles (d). These mathematical tools are at the core of our algorithms for rendering
caustics and high-resolution normal maps.

in order to obtain

1 1
Pgq(m) dm = d 11
fA sta () dm fAﬂ(1+ﬁ1§C+ﬁ1§)2 o ap (11)

= f l|m - n| dm, (12)
AT

is the Jacobian of the transformation between normals and slopes [Walter et al. 2007].

1 .
where ———— = ||—
|m - n|? Hﬁ

Eq. 12 shows that Pgq corresponds to a constant distribution of normals D(m) = 1/7. The new integration domain
A is the spherical triangle (Fig. 3c), whose vertices are ny, n; and n,.

We have converted an integral over a triangular domain A into an integral of a cosine lobe restricted to a spherical
triangle. This integral has a simple analytic expression:

1 n; ><nJ
—|m-n|dm = — Zacos(n, n;) -n|.
AT In; X n;|

This is a classical result from the work of Lambert [1760] and a complete derivation can be found in the work of
Heitz [2017].

3.3 Code

Here is an example of implementation in C++. This code computes the integral of an isotropic GGX distribution
inside an arbitrary triangle in slope space.
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/* Conversion from slopes to normalized directions =*/
Vector3f slopes_to_n(const Vector2f &v) {

return normalize(Vector3f(-v.x(), -v.y(), 1));
3

/* Helper function for the integration of projected spherical triangles */
float edge_integral(const Vector3f &vl, const Vector3f &v2) {

float cosTheta = dot(vl, v2);

float theta = acos(cosTheta);

return cross(vl, v2).z() * ((theta > 0.0001f) ? theta/sin(theta) : 1);
3

/* Integral of a GGX distribution districted to a triangle in slope space */
float triangle_integral_ggx(const Vector2f &p@, const Vector2f &pl, const Vector2f &p2,
float alpha_x, float alpha_y) {

/* Linear transformation of slopes which reduces the problem to the case of
an isotropic GGX distribution with unit roughness. */

Vector2f scale(1/alpha_x, 1/alpha_y);

Vector3f n@ = slopes_to_n(p@ * scale);

Vector3f ni slopes_to_n(pl * scale);

Vector3f n2 = slopes_to_n(p2 * scale);

/* Integral of a cosine-weighted spherical triangle =*/
float integral = edge_integral(n@, nl)

+ edge_integral(nl, n2)

+ edge_integral(n2, no);
return abs(integral) / (2 * M_PI);

Integral of anisotropic GGX distributions inside arbitrary triangles

4  SAMPLING GGX DISTRIBUTIONS RESTRICTED TO TRIANGLES
4.1 Sampling in polar coordinates

Importance sampling a specular light path with our framework requires sampling a point inside a slope-space
triangle A proportionally to the distribution of slopes P as shown in Fig. 3d. A sample (s,,sg) can be obtained in
polar coordinates from two random numbers U and V sampled uniformly in the interval [0,1]. The first step
consists in sampling an azimuth sy from the marginal distribution

f l(r,e)eAP("’ 0)rdr
No

fo(6) = ; (13)

where 1, o4 is an indicator function whose value is 1 if the point (r,0) belongs to the triangle A, and the
normalization term Ng corresponds to the integral of P in the triangle A (Sec. 3):

No = ffl(r’e)EAP(r,Q)rdrdO. (14)

The corresponding cumulative distribution function for 6 is an integral of fo:

Fo(t) = fo fol0) d6. (15)




6 « Loubet, Zeltner, Holzschuch and Jakob

Fig. 4. Bilinear interpolation sometimes leads to singular densities of normals. In this example,
bilinear interpolation in the space of slopes results in infinite densities of slopes on a parabola.
Slope-space integrals pose additional challenges in such cases.

Since fo is a normalized probability density function, Fg is monotonically increasing with Fg(0) = 0 and
Fo(27) = 1. This function is proportional to the integral of P in the triangle A restricted to angles @ belonging
to the interval [0, ¢]. Therefore, it has an closed-form expression can be evaluated efficiently as discussed in
Sec. 3. Obtaining a sample from the distribution fg requires solving the equation Fg(sg) = U. Unfortunately, this
equation does not have an analytic solution and must be inverted numerically, e.g., using a Newton-Raphson
solver.

Given sg, the next step entails sampling a distance s, on the line 8 = sg. Let ryin and ry,c denote the intersection
distances of this line with the triangle A. For an isotropic GGX distribution, the probability density function for

sy is given by
2

]]_ ~
(r,s9)€A ra
) = 16
filr) = = (16)
where the normalization term Ng equals
2 2
ra a 1 1
1 A dr = — - . 17
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The corresponding cumulative distribution function is given by
1 a? 1 1
Fr(t) = —— - . 18
R() Ng2r |a? +r2  a®+ 1 (18)
This function can be inverted analytically:
o
Fr(sy) =V = sy = | —5—— —a?% (19)
— 2 NRY
ré +a? K

5 CHALLENGES INVOLVING BILINEAR INTERPOLATION

Bilinear interpolation is a perfectly valid interpolation method for normals, but the resulting distribution of
normals can be singular, as noted in previous work [Yan et al. 2014] and illustrated in Fig. 4. In such situations,
integrals in slope space are numerically problematic since the integrand can take on arbitrarily high values.
Even when the corresponding distributions of normals are non-singular, they lead to integrals that do not have
closed-form expressions in our framework. Similar to previous work [Yan et al. 2014], we use triangle meshes
and replace bilinear interpolation in normal maps with barycentric interpolation in normal map triangles.
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