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Fig. 1. We improve physically based differentiable rendering by introducing a recursive control variate into the optimization loop. Left: a baseline method [Vicini
et al. 2021] repeatedly renders noisy images to compute gradients. The noise leads to poor convergence. Right: applied on top of the baseline, our recursive
control variate reduces the noise using information from similar renderings in prior optimization steps. This leads to a reconstruction that is much closer to
the reference image. The plots show the evolution of the loss function and rendering variance as the optimization progresses.

We present a method for reducing errors—variance and bias—in physically
based differentiable rendering (PBDR). Typical applications of PBDR re-
peatedly render a scene as part of an optimization loop involving gradient
descent. The actual change introduced by each gradient descent step is
often relatively small, causing a significant degree of redundancy in this
computation. We exploit this redundancy by formulating a gradient esti-
mator that employs a recursive control variate, which leverages information
from previous optimization steps. The control variate reduces variance in
gradients, and, perhaps more importantly, alleviates issues that arise from
differentiating loss functions with respect to noisy inputs, a common cause
of drift to bad local minima or divergent optimizations. We experimentally
evaluate our approach on a variety of path-traced scenes containing surfaces
and volumes and observe that primal rendering efficiency improves by a
factor of up to 10.
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1 INTRODUCTION
Inverse rendering—the reconstruction of a virtual 3D scene from
images—has become a mainstream tool for content capture and
creation. Differentiable renderers, in which the rendering function
is inverted by gradient descent, rely on a costly optimization loop:
for each gradient descent step, of which there may be thousands,
the algorithm has to render an image of the current state of the
reconstruction (“primal” rendering) and compute gradients with
respect to scene parameters (“adjoint” rendering). Yet, consecutive
gradient descent steps often correspond to minuscule changes in the
scene, meaning that a large portion of the rendering computation is
redundant.

For this reason, it is common to use only a few samples per pixel,
resulting in noisy primal rendering and noisy gradients. After all,
optimizers like stochastic gradient descent are designed to deal with
noisy gradients, and small noisy steps permit a more fine-grained
exploration of the parameter space.
However, a subtle aspect that is often neglected is that the opti-

mizer is not directly applied to the noisy image, but to a loss com-
puted from it. Many common loss functions introduce bias when
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differentiated with respect to noisy inputs, even when the images
are themselves unbiased. Affected are all non-L2 loss functions,
including the frequently used L1 error. Optimizations using learned
perceptual losses such as the widely used VGG loss [Johnson et al.
2016] tend to break down entirely when provided with poorly con-
verged images. Prior work has used tens to hundreds of samples per
pixel [Nimier-David et al. 2022, 2019] to alleviate bias-related issues
at a considerable computational cost.
Our work leverages the redundancy in the primal rendering

phase by using prior renderings as control variates. Control vari-
ates [Fieller and Hartley 1954; Kalos and Whitlock 1986] are a
generic, unbiased variance reduction technique for Monte Carlo
integration. They are particularly appealing in the context of inverse
rendering since gradient descent naturally leads to high correlation
between subsequent optimization steps, and the noise reduction is
proportional to this high correlation.

To this end, we propose a recursive control variate that combines
all prior renderings, weighted such that its correlation with the next
rendering, and thus the noise reduction, is maximized. To determine
the aforementioned weighting, we derive a recurrence relation in
terms of the statistics of our estimators, which we in turn estimate
with a exponentially weighted variant of Welford’s algorithm [1962].

It is imperative that the derivative estimate has low bias, as it
can cause gradient descent to drift to undesirable local minima or
even diverge. The recursive scheme overcomes the need for the
large number of samples in rendering. In fact, when the optimiza-
tion reaches steady state, our recursive control variate becomes
equivalent to rendering with a correspondingly larger sample count.
Compared to prior work, we report up to 10× higher rendering
efficiency, leading to either a significant speedup at equal recon-
struction quality or higher reconstruction quality after an equal
amount of time; see Figure 1.

Our paper starts by reviewing relatedwork (Section 2) followed by
the derivation of our recursive control variate (Section 3). Section 4
presents an investigation of the sources of bias in differentiable
rendering. We conclude with a thorough evaluation (Section 6) and
discussion (Section 7) of our method.

2 RELATED WORK
Our method is related to differentiable rendering, temporal reuse
in graphics, and the theory of control variates. The following para-
graphs review relevant prior work in all three areas.

Differentiable rendering. The term differentiable rendering can
refer to a variety of different techniques including rasterization [Has-
selgren et al. 2021; Kato et al. 2017; Laine et al. 2020; Liu et al. 2019;
Loper and Black 2014; Munkberg et al. 2021; Petersen et al. 2019;
Rhodin et al. 2015], sphere tracing of signed distance functions [Ban-
garu et al. 2022; Vicini et al. 2022], ray marching through emissive
volumes [Barron et al. 2021; Mildenhall et al. 2020; Müller et al. 2022;
Yu et al. 2021], path tracing of globally illuminated meshes [Azinovic
et al. 2019; Bangaru et al. 2020; Hasselgren et al. 2022; Li et al. 2018;
Zhang et al. 2020], volume rendering [Che et al. 2020; Gkioulekas
et al. 2013; Khungurn et al. 2016; Nimier-David et al. 2022; Zhang
et al. 2021], and combinations thereof [Jakob et al. 2022a; Nimier-
David et al. 2020, 2019; Vicini et al. 2021; Zeltner et al. 2021].

Our recursive control variates are largely agnostic to the underly-
ing algorithm. They require only minimal changes to reduce noise,
e.g., by controlling the pseudo-random number generator seed or
fixing path vertices across optimization steps. Thus, our method
is orthogonal and beneficial to most of the above baselines—even
more so, the noisier they are. In Section 6, we demonstrate higher-
quality material optimization with Path Replay Backpropagation
(PRB) [Vicini et al. 2021] and twice faster volume optimization with
Differential Ratio Tracking (DRT) [Nimier-David et al. 2022].

Temporal computation reuse. Practitioners have long sought to
amortize the rendering cost across consecutive frames both in inter-
active applications and in offline rendering of animated sequences.
Existing work ranges from biased screen-space approaches like
temporal anti-aliasing [Karis 2014; Marrs et al. 2018] and denois-
ing [Chaitanya et al. 2017; Hasselgren et al. 2020; Schied et al. 2018;
Vogels et al. 2018], over scene-space data structures like photon
mapping [Elek et al. 2012] and illumination caches [Binder et al.
2022; Majercik et al. 2022; Müller et al. 2021; Seyb et al. 2020] to
unbiased techniques such as path guiding [Dittebrandt et al. 2020],
reservoir resampling [Bitterli et al. 2020; Lin et al. 2022; Talbot et al.
2005], and control variates [Keller 2001; Manzi et al. 2016; Rousselle
et al. 2016].
Two properties of control variates are particularly appealing in

the context of differentiable rendering: they are simple to imple-
ment and provide unbounded noise reduction when the optimiza-
tion reaches a steady state, which equivalent to rendering with
an increasingly larger sample count. Ease of implementation im-
plies that they can sometimes even be applied on top of prior work.
We demonstrate a proof-of-concept combination with the OptiX
denoiser [Chaitanya et al. 2017] in Figure 9.

Pertaining to differentiable rendering, concurrent work in cloud
tomography [Czerninski and Schechner 2023] resamples paths across
consecutive optimization steps in order to avoid the computational
cost of tracing new ones. However, the authors report that this
comes at the cost of increased noise—a reversal of the characteristics
of our method.

Control variates. Training pipelines in the area of machine learn-
ing tend to rely on variants of stochastic gradient descent (SGD)
to replace the costly gradient evaluation with a cheaper statistical
estimate computed from a randomly selected subset of the training
data. The resulting variance can impede convergence, which has
motivated variance-reduced methods [Gower et al. 2020] includ-
ing Stochastic Average Gradient “Amélioré” (SAGA) [Defazio et al.
2014] and Stochastic Variance-Reduced Gradient (SVRG) [Johnson
and Zhang 2013]. Both SAGA and SVRG maintain a running approx-
imation of the full gradient and use it to provide unbiased variance
reduction using the framework of control variates. Such approaches
are not compatible with differentiable rendering, where variance
arises in a different manner owing to the numerical integration over
continuous domains.

To reduce rendering noise, the first use of control variates is due
to Lafortune andWillems [1995a,b] who fit a constant ambient light-
ing term and a 5D piecewise-constant tree to the spatio-directional
radiance field. Because these fitted functions are analytically and
cheaply integrable, they are trivially usable as control variates.
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Fig. 2. Our method incrementally adapts a control weight to achieve an efficient reuse of samples from prior iterations. In this reconstruction of the albedo,
roughness, and extinction coefficient of the three respective bunnies, renderings become increasingly correlated as the exploration of the parameter space
stabilizes. The proposed control weight reacts to this correlation and steadily approaches unity while the primal rendering variance decreases.

Other work introduces more sophisticated control variates with
known integral, such as linear combinations of probability densi-
ties [Fan et al. 2006; Kondapaneni et al. 2019], piecewise polynomial
functions parameterized by a tree [Crespo et al. 2021], neural normal-
izing flows [Müller et al. 2020], or the diffusion profile in sub-surface
scattering [Xie and Olano 2021].

Certain classical algorithms can also be viewed through the lens of
control variates, such as residual tracking [Novák et al. 2014], delta
tracking [Georgiev et al. 2019], multiple importance sampling [Kon-
dapaneni et al. 2019], Monte Carlo integration [Salaün et al. 2022],
and even temporal gradient-domain rendering [Manzi et al. 2016],
which is equivalent to a particular (unweighted) configuration of
the image space control variates of Rousselle et al. [2016].

Particularly relevant to our work are control variates that rely on
successive estimation rather than analytic integration [Keller 2001;
Manzi et al. 2016; Misso et al. 2022; Rousselle et al. 2016; Szécsi et al.
2004]. In our case, the light transport simulated in prior optimization
steps feeds into a successively less noisy control variate for future
optimization steps.

3 VARIANCE REDUCTION BY CORRELATED SAMPLING
We introduce a new generalization of control variates [Fieller and
Hartley 1954] that facilitates its adoption in optimization algorithms
as an error reduction technique.

3.1 Preliminaries
Control variates. We use the notation ⟨𝐹 ⟩ to denote a Monte Carlo

estimator of an integral 𝐹 involving the function 𝑓 . This estimator
may exhibit a large amount of variance. Given another function 𝑔
resembling 𝑓 , whose integral 𝐺 is furthermore available in closed
form, the variance of estimating 𝐹 can be reduced by the addition
of a control variate [Fieller and Hartley 1954]

⟨𝐹 ⟩CV = ⟨𝐹 ⟩ + 𝛼
(
𝐺 − ⟨𝐺⟩) . (1)

For this technique to be effective, the estimator ⟨𝐺⟩ should be corre-
lated with ⟨𝐹 ⟩, which is typically accomplished by evaluating both
estimators using the same set of pseudo-random numbers.
Since E[𝐺 − ⟨𝐺⟩] = 0, the real-valued control weight 𝛼 may be

chosen arbitrarily without introducing bias. The optimal choice that
minimizes variance [Owen 2013] is given by

𝛼opt =
Cov[⟨𝐹 ⟩, ⟨𝐺⟩]
Var[⟨𝐺⟩] . (2)

When 𝐺 is not known in closed form, a Monte Carlo estimate can
be used instead, which we denote by ⟨𝐺⟩0. The variance of such an
estimator is minimized by the optimal control weight

𝛼opt =
Cov[⟨𝐹 ⟩, ⟨𝐺⟩ − ⟨𝐺⟩0]
Var[⟨𝐺⟩ − ⟨𝐺⟩0] . (3)

Building on Equation (3), Rousselle et al. [2016] show how to reduce
the variance when re-rendering an existing scene following a change
to its parameters. Let ⟨𝐹0⟩𝑝 denote an initial rendering computed
using a particular set of Monte Carlo samples with index 𝑝 , while
⟨𝐹1⟩𝑞 refers to the estimator following a modification of the scene.
If 𝑝 = 𝑞, the second estimator uses the same sample set, causing it
to be correlated with ⟨𝐹0⟩𝑝 . If 𝑝 ≠ 𝑞, then 𝑝 and 𝑞 will be deemed
statistically independent sets of samples. In general, ⟨𝐹𝑖 ⟩𝑝 will refer
to a rendering of an evolving scene at iteration 𝑖 using the set of
samples 𝑝 .

Rousselle et al. [2016] propose to use the original rendering ⟨𝐹0⟩𝑝
as a control variate, resulting in the estimator

⟨𝐹1⟩CV = ⟨𝐹1⟩1 + 𝛼
(⟨𝐹0⟩0 − ⟨𝐹0⟩1

)
, (4)

where the weight

𝛼 =
Cov[⟨𝐹1⟩1, ⟨𝐹0⟩1]
Var[⟨𝐹0⟩0 − ⟨𝐹0⟩1] (5)

is computed using numerical approximations of the (co-) variances.
The estimator ⟨𝐹0⟩0 does not appear in the covariance (cf. Equa-
tion (3)) because it is statistically independent from ⟨𝐹1⟩1 and there-
fore does not contribute.

3.2 Recursive Control Variates
Applications of differentiable rendering tend to re-render the scene
thousands of times. At the same time, the magnitude of changes
between steps is relatively small—often orders of magnitude below
those found in primal renderings of animated or interactive content.
Our extension of the previously introduced control variate exploits
this redundancy across an arbitrarily long sequence of renderings.
We generalize the concept in Equation (4) to a sequence, where the
new estimator

⟨𝐹𝑛⟩CV = ⟨𝐹𝑛⟩𝑛 + 𝛼𝑛
(⟨𝐹𝑛−1⟩CV − ⟨𝐹𝑛−1⟩𝑛

)
(6)

recursively compounds variance reduction across the entire se-
quence.
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Fig. 3. Ignoring the correlation between consecutive iterates can severely
impact the effectiveness of our method. In this figure, we apply our control
variate to repeated rendering passes of an unchanging scene for 50 iterations,
which is representative of an optimization that has reached a steady state.
Optimal control weights can be computed analytically in this simple case.
Top: the analytic control weight 𝛼𝑛 = 𝑛/𝑛+1. Middle: computation of 𝛼𝑛
via Equation (8), using Welford’s algorithm to estimate the Var[ ⟨𝐹𝑛 ⟩CV ]
statistic. Bottom: further replacing the online-estimator with the recurrence
from Equation (10). This last approach yields a better approximation of the
optimal solution and achieves a comparable variance reduction.

The starting point of this sequence is set to

⟨𝐹0⟩CV := ⟨𝐹0⟩0 (7)

and its optimal control weight is given by

𝛼𝑛 =
Cov[⟨𝐹𝑛⟩𝑛, ⟨𝐹𝑛−1⟩𝑛]

Var[⟨𝐹𝑛−1⟩𝑛] + Var[⟨𝐹𝑛−1⟩CV]
. (8)

While the structure of the denominator above does not match Equa-
tion (5), they are mathematically equivalent because ⟨𝐹𝑛−1⟩𝑛 and
⟨𝐹𝑛−1⟩CV are computed from independent sample sets and because
the identity Var[𝑋 − 𝑌 ] = Var[𝑋 ] + Var[𝑌 ] holds for independent
variables 𝑋 and 𝑌 . We estimate the variances separately, which
motivates this definition.
The control weight 𝛼𝑛 has an intuitive interpretation: it deter-

mines the degree to which past information can be reused. Large
scene parameter changes will generally reduce the correlation be-
tween current and previous renderings, causing 𝛼𝑛 to be nearly zero.
This effectively discards the information gathered in previous itera-
tions. Conversely, an unchanging scene is maximally correlated, in
which case the numerator equals Var[⟨𝐹𝑛−1⟩𝑛]. If all renderings are
maximally correlated, we have 𝛼𝑛 = 𝑛/𝑛+1. Inserting this expression
into Equation (6) reveals that ⟨𝐹𝑖 ⟩CV turns into the mean of all pre-
ceding estimates. Figure 2 visualizes the per-pixel control weights
during an inverse rendering optimization. In early iterations, the
control weights start out close to zero, progressively approaching
unity as more and more information is gathered. The variance of
the rendered primal images decreases correspondingly.

Optimality. While the approach we just presented uses all previ-
ous renderings to reduce variance at a given iteration, it does not
combine them in the theoretically optimal way, which would be to
use all previous renderings as individual control variates:

⟨𝐹𝑛⟩CV = ⟨𝐹𝑛⟩𝑛 +
𝑛−1∑︁
𝑖=0

𝛼𝑖
(⟨𝐹𝑖 ⟩𝑖 − ⟨𝐹𝑖 ⟩𝑛

)
(9)

However, such an approach is not practical: determination of
control weights 𝛼𝑖 entails rendering all previous states using the
same set of Monte Carlo samples to construct and process an ever-
growing covariance matrix. As we observed, earlier terms become
less important as the optimization evolves, hence this prohibitive
computational effort would also be wasteful. Our method can be
interpreted as an approximation of this strategy, whose weights are
equivalent to Equation (9) when the optimization is in its steady
state, as illustrated in Figure 3.

Estimating the control weight 𝛼𝑛 . The control variate described so
far remains incomplete in the sense that it still lacks an explanation
of how the (co-) variance terms in Equation (8) should be computed.
Unfortunately, these terms are intractable using analytic methods,
which means that approximations are needed in practice. The better
these approximations, the closer the control variate will approach
theoretical optimality.
Our method estimates the needed terms Cov[⟨𝐹𝑛⟩𝑛, ⟨𝐹𝑛−1⟩𝑛],

Var[⟨𝐹𝑛−1⟩𝑛], and Var[⟨𝐹𝑛−1⟩CV] statistically, hence we seek ap-
proximations that are characterized by a small amount of variance
and bias. Compared to other parts of the optimization, some bias
in the statistics estimation is tolerable, since it merely impacts the
effectiveness of the control variate.
Low variance and low bias are somewhat conflicting goals: the

use of samples from many prior optimization steps will naturally
produce more converged estimates. At the same time, long-term
aggregation with an evolving scene introduces bias, as samples are
no longer identically distributed. We use an exponentially weighted
aggregation to compromise between the two goals. The estimates
become unbiased once the optimization reaches a steady state.

The most commonly used (co-) variance estimator performs two
passes through a dataset to determine the sample mean and final
estimate. This is problematic in long-running optimizations, since
every evaluation of 𝛼𝑛 would need access to all prior renderings.
We instead rely on Welford’s algorithm [1962], which computes an
equivalent estimate in a single pass using a fixed amount of tem-
porary storage. Appendix A reviews the original form of Welford’s
algorithm along with exponential weighting [Schubert and Gertz
2018; Xie and Olano 2021] and a modification to avoid startup bias.

A final challenge arises when estimating the variance of ⟨𝐹𝑛⟩CV:
the recursive definition of our control variate introduces correla-
tions across iterations, which violates independence assumptions
in standard variance estimators.
We propose a recurrence that accounts for this effect:

Var[⟨𝐹𝑛⟩CV] = Var[⟨𝐹𝑛⟩𝑛 + 𝛼𝑛
(⟨𝐹𝑛−1⟩CV − ⟨𝐹𝑛−1⟩𝑛

)] (10)

= Var[⟨𝐹𝑛⟩𝑛] + 𝛼2𝑛Var[⟨𝐹𝑛−1⟩𝑛]
− 2𝛼𝑛Cov[⟨𝐹𝑛⟩𝑛, ⟨𝐹𝑛−1⟩𝑛] + 𝛼2𝑛Var[⟨𝐹𝑛−1⟩CV]
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Although correct, there is a practical issue with this equation: exact
statistics involving ⟨𝐹𝑛⟩ and ⟨𝐹𝑛−1⟩ are generally unknown.
We found that the recurrence remains effective when it is used

in an approximate sense, by estimating statistics with the presented
variant of Welford’s algorithm. Figure 3 examines the effectiveness
of this approximation in a setting where optimal weights can be
computed analytically.
Although the control weight can in principle take on any value,

e.g., 𝛼𝑛 < 0 to exploit negative correlation, such a situation would
not be meaningful in our application that repeatedly renders the
same scene with small variations. We always clamp 𝛼𝑛 to the range
[0, 1], which is helpful especially at the beginning of the optimiza-
tion when the statistics are not yet well-converged.

Bias. Unbiasedness of a control variate generally requires that its
input estimators are not correlated with the control weight [Laven-
berg et al. 1982; Nelson 1990]. This is not the case in our method,
which is a key limitation requiring further discussion. Indeed, our
initial definition of 𝛼𝑛 correlates it with respect to both ⟨𝐹𝑛−1⟩CV
and ⟨𝐹𝑛−1⟩𝑛 , which leads to noticeable bias shown in Figure 4 (left).
In practice, we introduce a small modification by updating the

running (co-)variance estimates after evaluating ⟨𝐹𝑛⟩CV. The sta-
tistics estimators thus lag one iteration behind, ensuring that 𝛼𝑛
and ⟨𝐹𝑛−1⟩𝑛−1 are statistically independent. Some bias clearly re-
mains, as 𝛼𝑛 is still correlated with ⟨𝐹𝑛−1⟩CV (both computed using
a stream of previous renderings). In other words, our approach re-
moves the correlation with the previous rendering, but not with all
the ones before it. The right side of Figure 4 illustrates the impact
of this change. As we will show in the next section, our method
can significantly reduce the amount of bias caused by loss function
derivatives. As such, we trade a small amount of bias in the control
variate for a larger bias reduction in the loss function gradient.

4 BIAS IN DIFFERENTIABLE RENDERING
Derivative-based inverse rendering methods require some type of
loss function L to quantify the difference between the simulation’s
output 𝐹\ and reference data 𝐼ref . Different representations of 𝐹\
and 𝐼ref are conceivable: in the simplest case, this could be a single
image. More commonly, multiple images from different viewpoints
must be combined to reduce ambiguity. Instead of an image, the
renderer could also output a sparse sampling of the light field or
a projection onto a set of basis functions. The observations in this
section apply to all of these possibilities.
We usually seek the global minimizer \∗ of the composition of

simulation and loss, i.e.,

\∗ = argmin
\

L(𝐹\ , 𝐼ref ) . (11)

Due to the challenging nature of this non-linear objective, we must
taper our expectations and settle for a local minimum. This normally
involves gradient-based techniques based on the derivative of the
objective. Following expansion via the chain rule, an estimator of
this derivative is given by

⟨𝜕\L(𝐹\ , 𝐼ref )⟩ = ⟨𝜕\ 𝐹\ ⟩ · 𝜕L(⟨𝐹\ ⟩, 𝐼ref ) . (12)

A subtle issue with this approach is that the estimate can be biased
even when ⟨𝐹\ ⟩ is unbiased, which breaks traditional convergence

0 200 400
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L1 Error

CV - Statistics pre-update
CV - Statistics post-update
Baseline - High sample count

CV - Statistics pre-update CV - Statistics post-update
−0.1052
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Fig. 4. Bias of the control variate estimator ⟨𝐹𝑛 ⟩CV visualized using the
difference between the expected rendering and the CV estimate at iteration
#256 of the optimization from Figure 9. Updating the statistics estimates
before evaluating the control variate correlates the control weight with
the current image, which adds significant bias (bottom left). Updating the
statistics after evaluating the control variate removes this source of bias
(bottom right). A small amount of bias remains due to the correlation be-
tween the control weight and the previous iteration’s control variate. In
return, variance reduction yields results with a significantly higher effective
sample count (1024 vs. 16 samples per pixel) at a fraction of the cost (top).

guarantees of stochastic gradient descent (SGD). For example, SGD
with averaging finds the minimum of any strongly convex objective,
but it may drift or even diverge when fed with biased gradients.
A first potential source of bias arises from the multiplication oper-
ation in Equation (12), which is only unbiased if both factors are
independent estimators. The established way to deal with this con-
straint is to simply estimate ⟨𝐹\ ⟩ twice with different random vari-
ates [Gkioulekas et al. 2013]. We use path replay back-propagation
(PRB) [Vicini et al. 2021] to estimate the first factor ⟨𝜕\ 𝐹\ ⟩PRB and
insert our recursive control variate ⟨𝐹\ ⟩CV into the loss term. This
results in the final form of the proposed gradient estimator:1

⟨𝜕\L(𝐹\ , 𝐼ref )⟩ = ⟨𝜕\ 𝐹\ ⟩PRB · 𝜕L(⟨𝐹\ ⟩CV, 𝐼ref ) . (13)

The second source of bias is less well studied and harder to
overcome: 𝜕L(⟨𝐹\ ⟩, 𝐼ref ) is only unbiased when ⟨𝐹\ ⟩ is noise-free,
or when the derivative of the loss 𝜕L is a linear function, since
E[𝑓 (𝑋 )] ≠ 𝑓 (E[𝑋 ]) for general random variables 𝑋 unless the
function 𝑓 is linear.2 Here, 𝑓 corresponds to 𝜕L and 𝑋 to ⟨𝐹\ ⟩.
This observation has dire consequences: in general, the L2 loss

is the only loss function that leads to unbiased derivative estimates.
While thismay be an acceptable choice for some applications [Milden-
hall et al. 2020; Müller et al. 2021], many other situations call for
different loss functions [Hasselgren et al. 2020; Heitz et al. 2021;
Johnson et al. 2016; Kallweit et al. 2017; Munkberg et al. 2021; Xing
et al. 2022].
1For the L2 loss specifically, there exist alternative solutions [Deng et al. 2022; Pid-
horskyi et al. 2022] that not only produce unbiased gradients but also unbiased loss
values (though the values do not affect optimization, see Figure 6). In our work, we
argue for supporting different loss functions so we do not discuss these solutions in
further detail.
2For convex 𝑓 , this is also known as Jensen’s inequality [1906].
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Fig. 5. Bias arising from the use of non-L2 losses can cause undesirable
drift during the optimization. The reconstruction shown here tries to infer
the medium extinction of the target (c) using an L1 loss. (a) Variance in the
primal image biases the gradient computation, causing the optimization
to stabilizes at an extinction value that is too low. (b) Shifting the mean
(Equation (14)) to remove bias fixes the convergence. While not a practical
or general solution, this emphasizes the source of the problem. The bottom
row shows high sample count renderings of the final parameter states.

The issue is not just theoretical and impacts any inverse rendering
task involving a non-L2 loss. Figure 5 demonstrates the problem in
a low-dimensional reconstruction task involving the extinction of a
homogeneous volume. This scene is challenging to render, causing
primal images to be relatively noisy. Coupled with an L1 loss, the
optimization stabilizes at a fixed point that does not match the target.
We also perform the same optimization with a brute force debiased
estimator of the loss derivative, in which we separately compute and
subtract the bias term (we omit the 𝐼ref argument for readability):

⟨𝜕L(𝐹\ )⟩BFD = 𝜕L(⟨𝐹\ ⟩) + 𝜕L(E[⟨𝐹\ ⟩]) − E[𝜕L(⟨𝐹\ ⟩)], (14)
While this estimator shares the variance characteristics of the

original, the lack of bias now enables the same optimization to
converge to the reference answer (see Figure 5 (b)). Naturally, brute
force debiasing is not a practical solution—our example merely
demonstrates that the unsatisfactory convergence is indeed caused
by bias.
In any application involving a non-L2 loss, our control variate

therefore serves an important second purpose besides variance
reduction, which is to reduce bias arising from the loss function. It
prevents the situation where bias causes the optimization to settle in
an undesirable parameter state; we visualize this situation in Figure 6.
Once the optimization approaches a fixed point, our control variate
reuses samples across an increasing number of iterations, improving
the accuracy of the primal rendering that in turn reduces bias in the
loss derivative.

Figure 7 illustrates the effectiveness of our control variate (third
column). It exhibits low variance and good agreement with refer-
ence gradients computed using a high sample count. The L1 loss
produces ±1-valued derivatives and reveals noticeable disagreement
between the reference and PRB baseline.

5 IMPLEMENTATION
The control variate in Equation (6) references the terms ⟨𝐹𝑛⟩𝑛 and
⟨𝐹𝑛−1⟩𝑛 , which represent correlated renderings of the scene at adja-
cent iterations performed using the same Monte Carlo samples. This
still leaves some room for experimentation—for example, the pre-
ceding sections did not state the domain on which samples should
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Fig. 6. 1D Visualization of the loss (left) and derivative (right) landscape
of the volumetric dragon scene from Figure 5 for various extinction val-
ues 𝜎𝑡 ∈ [2, 8] (horizontal axis), sample counts (spp), and L1/L2 losses
(top/bottom). The reference is 𝜎𝑡 = 5, while loss minima (× symbols) curi-
ously occur at different positions. This bias results from variance and the
non-linearity of both losses. In the L1 case, bias also contaminates the
derivative, causing undesirable drifts (top right). The L2 derivative is linear,
hence the optimization has a fixed point at the correct value (bottom right).

be generated. We tested sample reuse on primary sample space [Kele-
men et al. 2002] and on path space [Veach 1997]. Figure 8 visualizes
the impact of this choice on the control variate’s performance.

Primary sample space. Sample reuse on primary sample space
is particularly simple: all one needs to do is to render the scene
twice at every iteration. The sample generator should be initialized
so that its internal state in every first rendering step matches that
of the preceding iteration’s second rendering step. We denote this
approach as “CV-PSS” in our experiments.

There are two downsides: first, rendering twice at every iteration
naturally doubles the primal rendering cost, which accounts for
roughly 1/3 of the total cost of a PRB gradient step.
The second issue is the way in which certain scene parameters

influence the sampled path geometry. For example, consider sam-
pling the directional distribution of a rough microfacet BRDF using
a fixed position in primary sample space. Perturbing the roughness
parameter will also change the computed ray direction, which can
cascade into a significant change to the rest of the light path. The
resulting loss of correlation is apparent in Figure 8 (b). Parameters
with this behavior include surface roughness, normal maps, the
index of refraction, and the extinction and scattering anisotropy of
participating media.

Path space. The path-space variant reuses sampled light paths
instead of the uniform variates that were used to generate them.
The architecture of our implementation (“CV-PS”) follows Rousselle
et al. [2016], who introduce BSDF adapters that encapsulate two
BSDFs with different parameter states. We extend this idea to media
and rely on a modified volumetric path tracer that samples paths
from the new state, while simultaneously computing radiance esti-
mates for the old state. Participating media furthermore require that
free-flight distances are sampled with a majorant that bounds both
states. Appendix B provides pseudocode explaining the necessary
modifications in the surface case.
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Fig. 7. Our control variate reduces both variance and bias in typical recon-
struction tasks. Here, we contrast loss function derivatives of the baseline
(PRB) and our method computed using either a L1 or L2 loss as loss func-
tion. While our method cannot fully remove all bias in the L1 case, the
output still shows good agreement with reference derivatives computed
using a high sample count. The example shows iteration #20 of an opti-
mization that reconstructs the materials of a challenging interior scene
lit entirely using indirect illumination, where all approaches use the same
gradient updates, i.e. control variates are only used for visualization. Further
detail on the optimization is provided in Section 6 and Figure 9.

It is interesting to note that rendering algorithms already evaluate
correlated estimators in path space, using a single path to estimate
the radiance for each of several color channels. Another architectural
approach for realizing path-space sample reuse could therefore
entail changing the system’s color representation from 3 (RGB) to 6
channels or tracking two packets of sampled wavelengths.
Path space sample reuse yields improved correlation and lower

variance. Reusing light paths to evaluate two estimators also reduces
ray tracing cost and makes it possible to fuse the entire computation
into a single GPU kernel. Applied to the experiment in Figure 8, we
find that this approach reduces primal rendering overheads from
2× to 1.6× (which, again, only represents roughly 1/3 of the total
cost of a gradient step). Besides Figure 8, all other results discussed
this paper use the CV-PS variant.

Geometric optimization. We did not investigate parameters that
move or deform surface geometry, which pose additional challenges
for sample reuse. In the primary sample space setting, we expect
such parameters to reduce the correlation and effectiveness of the
control variate similar to other parameters that have an effect on the
sampled path geometry. The path space variant would require the
addition of “shift mappings” to ensure that the moved path vertices
remain valid [Manzi et al. 2016]. We find this an interesting direction
for future work but consider it beyond the scope of this article.

Volumetric representations replace discrete visibility changes at
boundaries with smooth transitions. They are less affected by these
challenges and lend themselves to gradually evolving geometry.

6 RESULTS
We implemented our method in Mitsuba 3 [Jakob et al. 2022b] and
combined it with two distinct differentiable rendering techniques:
Path Replay Backpropagation (PRB) [Vicini et al. 2021] to reconstruct
textured surface materials and homogeneous volume parameters,
and Differential Ratio Tracking (DRT) [Nimier-David et al. 2022]
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0.0
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1.0

Fig. 8. Our method builds on the ability to re-render a changing scene using
the same set of Monte Carlo samples. The three columns show renderings
of the scene in Figure 2 at taking the same 50 optimization steps. They com-
pare (a) The baseline without control variate. (b) Sample reuse in primary
space (“CV-PSS”). While this approach is easy to implement by re-seeding
the sample generator, it can suffer from reduced correlation when scene
parameters impact the sampled path geometry. This is apparent in the opti-
mization of bunny #2’s roughness and bunny #3’s extinction parameter. (c)
Sample reuse in path space (“CV-PS”) leads to an overall higher correlation,
control weight values, and lower variance.

to reconstruct heterogeneous volumes. We construct a separate
control weight per color channel. Figures that visualize control
weights show the ones for the red channel. Our reference imple-
mentation can be found at https://github.com/rgl-epfl/recursive_
control_variates.

Material reconstruction. The inversion task in Figure 9 analyzes
the performance of material reconstruction in a scene with challeng-
ing indirect illumination. We hold the geometry fixed and reset the
painting’s texture and teapot materials. The optimization then tries
to recover these properties, as well as homogeneous volume param-
eters for the teapot. We use the gradient preconditioning approach
of [Nicolet et al. 2021] for the texture gradients. We use PRB [Vicini
et al. 2021] as baseline and experimented with L1 and L2 losses
that compare the tentative state to a single rendered reference im-
age. Combining PRB with our recursive control variate results in
a clear improvement irrespective of the chosen loss function. The
improvement is largest when minimizing the L1 loss due to the bias
reduction afforded by our technique.

Denoising. Most real-world use of Monte Carlo rendering nowa-
days involves a dedicated denoising step, which is typically carried
out by convolutional neural networks trained on large datasets.
It is tempting to incorporate a similar denoising step to reduce
primal rendering variance in an inverse rendering pipeline.
Several insets in Figure 9 demonstrate the consequences of this

idea. Counter-intuitively, a direct application of a denoiser actually
reduces the reconstruction quality, since the added bias impedes
the optimization. This can turn a previously unbiased optimization
into one that no longer converges— observe, e.g., the unrealistic
brightening of the tea in the L2 PRB+Denoising column.

Our experiment used the OptiX denoiser that is based on an article
by Chaitanya et al. [2017], but we expect similar behavior with
other learned denoisers. Denoising our control variate estimator
progressively reduces bias and yields the overall best result.
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Fig. 9. Reconstruction performance in a challenging scene that is entirely lit using indirect illumination. We reset the painting’s texture and teapot materials
and attempt to reconstruct them using a single rendered reference image using Path Replay Backpropagation [Vicini et al. 2021]. Our control variate (“Ours”
columns) improves gradients, which leads to higher-quality reconstructions. The improvement consists of reduced variance when using a L2 loss and
additional bias reduction when using a L1 loss and/or denoiser. Counter-intuitively, the addition of a denoising step can reduce reconstruction quality: while
it lowers primal rendering noise, the added bias tends to impede the optimization. Applying the denoiser on top of our control variate estimator yields better
results.

(a) Baseline (b) Ours (c) Reference

Fig. 10. Learned perceptual losses are sensitive to noise, which can
bias the optimization towards suboptimal solutions. Here, we employ
a VGG loss [Johnson et al. 2016] to quantify the distance to the ref-
erence (c) in a reconstruction of the back wall’s albedo texture. The
PRB baseline (a) is visibly affected by loss-induced bias, while our
method in (b) yields a better match.

Neural loss. Learned neural loss functions play an increasingly
important role as a differentiable proxy for perceptual similarity.
VGG [Simonyan and Zisserman 2015] is a widely used convolutional
neural network that has been trained to classify images from the
ImageNet dataset with high accuracy. The related VGG loss [Johnson
et al. 2016] truncates VGG and computes the Euclidean distance
between high-level features produced during the model’s evaluation.

Such techniques present an interesting alternative to traditional
pixel-wise losses, but they also tend to be highly sensitive to noise
due to the deep features propagating it.

The optimization in Figure 10 shows this by attempting to recon-
struct the textured back wall of a Cornell box, as measured by VGG
feature distance to a reference. Column (a) shows that loss-induced
bias is a severe problem, while our control variate in (b) achieves a
superior match to the reference in (c).

Heterogeneous volume reconstruction. Figure 11 applies our tech-
nique to the problem of heterogeneous volume reconstruction build-
ing on the adjoint pass of DRT. We modified the original imple-
mentation provided by the authors so that it processes full images
instead of randomly sampled subsets, which our implementation
does not currently support. We consistently use the same 8-10 refer-
ence views for each reconstruction task. Experiments in the original
article [Nimier-David et al. 2022] relied on a L1 loss, which made it
necessary to render primal images with a relatively large sample
count to reduce the impact of loss function bias. Variance reduction
from the control variate alleviates the need for this high sample
count, which improves the reconstruction quality at equal time and
significantly reduces primal rendering overheads for when target-
ing an equal level of quality. Detailed inspection of these results is
available through our supplementary image viewer.

7 DISCUSSION
Control variates for the adjoint phase. The recursive control variate

as presented in Section 3 is not limited to primal rendering—in
principle, the technique applies to any sequence of Monte Carlo
estimators. It should therefore be possible to also apply it to another
conspicuous sequence of Monte Carlo estimators that occurs in
the inverse rendering pipeline, namely the adjoint rendering phase
represented by the left factor in Equation (12) that transforms the
loss gradient into a scene parameter gradient.

However, correlated adjoint rendering is more involved than the
sample reuse techniques described in Section 5. Furthermore, the
adjoint estimator does not share the bias-related issues encountered
in the primal phase. Modern optimizers such as Adam [Kingma and
Ba 2015] compute accurate updates from unbiased gradients, even
if they are very noisy, which makes the potential benefits uncertain.
We leave further investigation of this topic as a future work.

Heuristic control weights. Our results suggest that accurate re-
construction and low variance go hand in hand with large values
of the control weight 𝛼𝑛 , e.g. in Figures 2 and 8. It is tempting to
encourage such positive outcomes heuristically by setting 𝛼𝑛 = 1 or,
informed by the steady-state solution, 𝛼𝑛 = 𝑛/𝑛+1, neither of which
depend on estimated statistics.
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Fig. 11. We examine the effectiveness of our recursive control variate in a heterogeneous volume reconstruction based on differential ratio tracking (DRT) [Nimier-
David et al. 2022]. The top image insets in each experiment show the primal rendering state in the last iteration of the optimization, while the bottom insets
visualize the absolute difference of a high-quality re-rendered version compared to the reference. Given the same sample budget, our method achieves a higher
reconstruction quality. To reach a similar level of quality, plain DRT without control variate requires ∼4-8 times more samples, which comes at a significant
computational cost. We only investigate changes to the primal rendering phase; the runtime cost of the DRT adjoint phase (hatched bars) is identical in every
experiment, which bounds the maximum possible speedup of our method.

However, both heuristics have clear failure modes. The first re-
sults in unbounded variance because the previous control variate
is never down-weighted while independent random variation con-
tinues to be added per Equation (6). The second heuristic results in
a uniform combination over all prior control variates regardless of
how similar each one is to the current scene. The optimal value of 𝛼𝑛
strongly depends on the optimization trajectory, which motivates
our definition of 𝛼𝑛 in Section 3.2.

Sample reuse in volumes. Introducing correlation in heteroge-
neous volume rendering by reusing sampled path vertices can in-
crease the cost of rendering. Delta tracking [Woodcock et al. 1965]
requires the majorant to bound both old and new volumes, which
adds overhead in the form of increased numbers of null collisions.
The density change from one iteration to the next fortunately tends
to be relatively small, which limits this additional cost. Similar to
the observation regarding color channels in Section 5, rendering a

volume with two states resembles rendering a volume with spec-
trally varying extinction and albedo. Thus, our method may also
benefit from more sophisticated rendering techniques for spectrally
varying volumes [Kutz et al. 2017; Miller et al. 2019].

Spatial reuse. Our method exploits redundancy by reusing in-
formation from prior optimization steps. Spatial reuse presents an-
other optimization opportunity, as demonstrated in gradient-domain
path tracing [Kettunen et al. 2015] and image space control vari-
ates [Keller 2001; Rousselle et al. 2016]. Curiously, recent inverse
rendering techniques decrease spatial redundancy following the
observation that processing randomly chosen pixels from all view-
points improves convergence [Mildenhall et al. 2020; Nimier-David
et al. 2022], as opposed to traditional rendering of coherent rays em-
anating from a single viewpoint. Future techniques targeting reuse
across space and time will need to address such extra complications.
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Multi-levelMonte Carlo. Besides their theoretical optimality [Hein-
rich 1998], hierarchical Monte Carlo methods and especially tele-
scopic sums have become a tool for debiasing estimators [Misso
et al. 2022]. Hence there are two opportunities for future research:
exploring the efficiency of a hierarchical approach [Keller 2001] and
investigating in how far biased gradient estimators can be made at
least consistent by means of multi-level Monte Carlo methods.

Combination with other variance reduction techniques. In the same
spirit as the combination with denoising in Figure 9, we believe
other, orthogonal, variance reduction techniques exploiting tem-
poral, screen space, and scene space correlation, are applicable in
tandem with our approach. Promising candidates are temporal path
guiding [Dittebrandt et al. 2020] and reservoir resampling [Bitterli
et al. 2020], which are both effective at spatio-temporal information
reuse, are both unbiased, and are both computationally light weight.

8 CONCLUSION
Practically all contemporary physically based rendering techniques
reuse information across simulated light paths in some form in
order to be efficient, be that temporally or spatially. Differentiable
rendering introduces an additional, as-yet untapped treasure trove
of potential information reuse: the optimization loop. Our recursive
control variate is a first attempt at leveraging this redundancy and
we expect many more to be practical.

What makes our technique powerful is its generality. Section 3
applies to any Monte Carlo estimator that is used in conjunction
with gradient descent, such as in simulations of quantum systems
or reinforcement learning. It can be likened to what “momentum”
is to gradient descent. Loss function bias (Section 4) is similarly
a general problem that any optimization of a stochastic system
must address. To this end, we take a first step by identifying the
problem and alleviating the issue through variance reduction. We
believe that there is great potential in developing general recipes for
debiasing loss derivatives, as well as in developing further schemes
for information reuse in optimization loops.
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A EXPONENTIALLY WEIGHTED WELFORD’S
ALGORITHM

The control variate in Section 3.2 depends on variance and covari-
ance estimates that we compute via Welford’s algorithm [1962],
which requires a single pass and a fixed amount of temporary mem-
ory. One additional requirement from Section 3.2 is that the influence
of prior states decays according to an exponentially weighted moving
average (EWMA). The iteration should furthermore be initialized to
remove startup bias. We have not found a variant combining these
three aspects in prior work and therefore describe it here.

EWMA and truncation. Given an infinite stream of observations
𝑥𝑛 , their exponentially weighted moving average is defined as

`𝑛 = 𝛼`𝑛−1 + (1 − 𝛼)𝑥𝑛 (15)

= (1 − 𝛼)
∞∑︁
𝑘=0

𝛼𝑘𝑥𝑛−𝑘 . (16)

However, an infinite history is not available in practice, whichmeans
that the sum turns finite and begins with a first observation 𝑥0:

`𝑛 = (1 − 𝛼)
𝑛∑︁

𝑘=0
𝛼𝑘𝑥𝑛−𝑘 . (17)

Suppose that all elements 𝑥𝑛 are in fact constant, i.e., 𝑥𝑛 = 𝑥0. In
this case, it would be desirable that the moving average agrees with
this value, but summation of the geometric progression produces

`𝑛 = (1 − 𝛼𝑛+1) 𝑥0 . (18)

To account for the finite past window of observations, we must
scale the EWMA values by (1 − 𝛼𝑛+1)−1. Another way of avoiding
truncation error is to assign the weight 1 to the first sample by
setting `0 B 𝑥0. This leads to the following alternative EWMA:

˜̀𝑛 = 𝛼𝑛𝑥0 + (1 − 𝛼)
𝑛−1∑︁
𝑘=0

𝛼𝑘𝑥𝑛−𝑘 , (19)

which is equivalent to infinite-extent EWMA on the stream:

𝑥𝑛 =

{
𝑥0 𝑛 ≤ 0,
𝑥𝑛 𝑛 > 0.

(20)

Fig. 12. Truncated EWMA of a sequence of normally distributed variates
with zero mean. Assigning a weight of 1 to the first observation causes the
value to linger for long after its observation, resulting in slow convergence.
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Consequently, the estimator ˜̀𝑛 is unbiasedwhen used to compute an
average of iid random variables, but it its output is initially skewed
towards 𝑥0, as shown in Figure 12. This is undesirable.

1 def update_covariance(C, Mx, My, x, y, n):

2 dy = y - My

3 # Update the means

4 My += dy / n

5 Mx += (x - Mx) / n

6 dx = x - Mx

7 # Update the second moment

8 C += dy * dx

9 # Return the sample covariance

10 return C / (n - 1)

Listing 1. Original code for Welford’s online algorithm for estimating the
covariance of two random variables.

Welford EWMA. We found prior use of weighted variants of
Welford’s algorithm work [Schubert and Gertz 2018; Schubert et al.
2014, 2016; Xie and Olano 2021], but none used the former variant
of start-up bias correction described above.
The following snippet realizes a Welford EWMA for covariance

estimation. Estimating the variance can be achieved in a similar
manner. The example uses Python syntax somewhat leniently and
assumes that an assignment to an argument propagates to the caller.
We use two differential decay rates 𝛼 = 0.9 and 𝛽 = 0.999 to average
first and second-order statistics following Kingma and Ba [2015].
The unmodified code is provided in Listing 1.

1 def update_covariance(C, Mx, My, x, y, 𝛼, 𝛽, n):

2 # Substitute the bias-corrected mean

3 dy = y - My / (1 - 𝛼**(n - 1))

4 # Update the means

5 My = 𝛼*My + (1 - 𝛼)*y

6 Mx = 𝛼*Mx + (1 - 𝛼)*x

7 # Substitute the bias-corrected mean

8 dx = x - Mx / (1 - 𝛼**n)

9 # Update the covariance

10 C = 𝛽 * C + (1 - 𝛽) * dx * dy

11 # Return the bias-corrected covariance

12 return C / (1 - 𝛽**n)

Listing 2. Modified version of Welford’s algorithm to use exponential
moving averages to compute covariances.

B IMPLEMENTING PATH-SPACE CORRELATED
RENDERING.

In order to introduce correlation in path space, one needs to eval-
uate two states of the scene at the same time. We achieve this by
augmenting a standard path tracer by a few more function calls to
evaluate the previous state of the scene while tracing. We show a
simplified example for a surface path tracer below.

1 def sample(scene, ray):

2 L_old, L_new = 0

3 𝛽old, 𝛽new = 1

4 prev_bsdf_delta = True

5 while(True):

6 si = scene.intersect(ray)

7 if si is None:

8 return L_old, L_new

9 # Direct emission

10 if prev_bsdf_delta:

11 mis_dir = mis_weight(...)

12 L_old += 𝛽old * mis_dir * si.emission

13 L_new += 𝛽new * mis_dir * si.emission

14 # Emitter sampling

15 wo, em_weight = scene.sample_emitter()

16 val = si.bsdf.eval(wo)

17 val_old = si.bsdf.eval_old(wo)

18 mis_em = mis_weight(...)

19 L_old += 𝛽old * mis_em * val_old * em_weight

20 L_new += 𝛽new * mis_em * val * em_weight

21 # BSDF sampling

22 wo, val, pdf = si.bsdf.sample()

23 # Evaluate the current path for the previous state

24 val_old = si.bsdf.eval_old(wo)

25 prev_bsdf_delta = si.bsdf.is_delta()

26 if prev_bsdf_delta:

27 𝛽old = 0

28 else:

29 𝛽old *= val_old / pdf

30 𝛽new *= val / pdf

Listing 3. Example of the modifications for a basic surface integrator with
MIS. We assume that the BSDFs have been augmented to keep track of the
previous parameter state, which can be queried via bsdf.eval_old.
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