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Abstract

We propose a novel system for designing and manufacturing surfaces that produce desired caustic images when
illuminated by a light source. Our system is based on a nonnegative image decomposition using a set of possibly
overlapping anisotropic Gaussian kernels. We utilize this decomposition to construct an array of continuous sur-
face patches, each of which focuses light onto one of the Gaussian kernels, either through refraction or reflection.
We show how to derive the shape of each continuous patch and arrange them by performing a discrete assignment
of patches to kernels in the desired caustic. Our decomposition provides for high fidelity reconstruction of natural
images using a small collection of patches. We demonstrate our approach on a wide variety of caustic images by
manufacturing physical surfaces with a small number of patches.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation

1. Introduction

Recently, increased attention has been paid to the design
of physical materials with desired reflectance or refrac-
tion properties [WDB∗07, WPMR09, MAG∗09, DWP∗10,
HFM∗10, FDL10]. In this paper, we propose a novel system
for designing and manufacturing surfaces that produce de-
sired caustic images when illuminated by a light source. This
allows, for instance, to create a translucent object that, when
lit by direct sunlight, projects a custom image on a projec-
tion plane behind it. (This is different from projecting light
through a slide, as light is redirected rather than absorbed,
maintaining higher light levels and contrast.)

A traditional application of reflective caustic design is lu-
minaire design: the creation of lamp reflectors that create a
desired radiance distribution for a given light source posi-
tion. Other applications could be for instance in architecture
(pattern glass that casts attractive caustics into a room) or
security features, creating a hard-to-forge artefact that can
be “read out” under normal daylight.

Previous work on physical surface reflectance or refrac-
tion design that would be capable of creating caustic patterns
either uses a bottom-up approach, constructing geometry
from discrete building blocks [WPMR09], or uses a global
analysis-by-synthesis approach [PP05,PPV07,FDL10]. The
bottom-up approach suffers from quantization artifacts due
to their choice of primitives, as we will show, while global,

Figure 1: We design and mill piecewise-smooth arrays of
micropatches which reshape incident light onto a collection
of Gaussian caustics, to approximate arbitrary images at a
projection plane. Above, we show a photograph of a physical
sample projecting the Lena image.

continuous optimizations cannot guarantee convergence.

In this paper, we propose a novel, discrete (bottom-up)
approach for surface generation that band-limits the con-
structed appearance and thus avoids quantization artifacts
while guaranteeing convergence. In addition, we show that
our surfaces are more amenable to milling than the current
state of the art in caustic generation [FDL10], at the same
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time providing higher contrast.

At the core of our system is a nonnegative image decom-
position into (possibly overlapping) anisotropic Gaussian
kernels, the superposition of which yields an aliasing-free
reconstruction of an input image. From this decomposition,
we create a surface consisting of an array of continuous sur-
face elements, each of which focuses light onto one of the
kernels, forming a Gaussian caustic through either refraction
or reflection. In analogy to the concept of microfacets, we
call these smooth surface elements micropatches. Together,
these micropatches create a joint caustic that approximates
the input image.

We show how to derive the shape of each micropatch
and how to near-optimally arrange such patches so that they
project onto the kernels in the desired caustic. Our decompo-
sition provides for high fidelity reconstruction of natural im-
ages even for small collections of patches. We compare the
results of our algorithm to previous work and demonstrate
our approach on a wide variety of caustic images by manu-
facturing physical surfaces with a small number of patches.

2. Related Work

The process of finding the underlying structure that matches
the high-level reflection or refraction specification have
been explored by a number of researchers. The computer-
based optimization approaches for designing custom reflec-
tors have been investigated since the early 1990s (see, for
example, Neubauer [Neu94]). The most common approach
uses analysis-by-synthesis, where the simulation framework
evaluates the light distribution for a given state and com-
pares it to the desired distribution. Typically the reflector
surface is assumed to be continuous and therefore continu-
ous optimization approaches can be used. In this context, the
work by Patow et al. [PP05, PPV07] use SAN optimization
to obtain the reflector surface for a given desired distribu-
tion and a fixed light position. As the search space is inher-
ently large and difficult to optimize researchers have used
GPUs to decrease the simulation time [MMP09, FDL10],
have used more efficient surface representations (e.g., B-
Splines [FDL10], NURBS [MMP09,ASG08]), have reduced
the search space to radially symmetric reflectors [ASG08],
and they have used more efficient optimization strategies (for
example, SPSA [FDL10]).

Our system is the most similar to Weyrich et al.’s approach
for the fabrication of microgeometry [WPMR09], in that
we use a regular assembly of discrete surface elements that
redirect light. We also use a similar optimization framework
to find a near-continuous arrangement of these elements.
In contrast, however, we use higher-order elements (reflec-
tors/refractors with a Gaussian caustic), which leads to better
tonal reproduction, and our optimization has to consider lo-
cal light sources and local target points when orienting these
elements, as we will discuss.

3. Overview

projection
plane

milled surface
of micropatches

at surface

Gaussian
caustic

The final output of our
system is a regular array
of (reflective or refractive)
micropatches, where, un-
der fixed illumination con-
ditions, each micropatch
generates a Gaussian caus-
tic and where all elemen-
tary caustics sum up to
form a desired input image
in a known projection plane. Figure 1 shows a photograph of
this and we illustrate this setup in the inset above.

In the remainder, we present the components of this sys-
tem. Section 4 describes our nonnegative image decomposi-
tion into Gaussian kernels. Section 5 derives the construc-
tion of an individual micropatch that generates a desired
Gaussian caustic. Finally, in Section 6 we present a global
optimization scheme to implement the Gaussian image de-
composition with micropatches, while considering physical
constraints of a fabrication process.

The system described here works equally well for reflec-
tive and refractive surfaces. For simplicity, we will focus on
the more complex effect of refraction, while the reflective
case follows by analogy.

4. Gaussian Image Decomposition

We approximate images using nonnegative linear combina-
tions of anisotropic Gaussian kernel functions. In the context
of normalized statistical distributions, such representations
are usually referred to as Gaussian mixture models (GMMs).

The parameters to be computed in our application consist
of the weights wi, means µi and covariance matrices Σi of a
2-dimensional m-term GMM of the following form:

f (x) =
m

∑
i=0

wi

2π
√

det Σi
exp
(
− 1

2 (x− µi)
T

Σ
−1
i (x− µi)

)
(1)

Rather than finding the parameters of this model using gen-
eral nonlinear optimization techniques (as done by Tsai
and Shih [TS06] for approximation environment maps us-
ing spherical radial basis functions), we use expectation
maximization (EM) [DLR∗77] specialized to GMMs, which
robustly converges to high-quality approximations using a
comparably small number of Gaussians terms.

Each of the summands in Equation (1) eventually leads to
a micropatch on the milled surface. To facilitate the manu-
facturing process, it will be useful to introduce the require-
ment that all of the patches collect an equal amount of en-
ergy, allowing them to be manufactured with identical sizes.
In the above expression, this constraint translates into setting
wi := 1

m (i = 1, . . . ,m).

Note that instead of directly operating on the input image,
the algorithms in this section instead make use of a dense
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Figure 2: We approximate images using a linear combination of anisotropic Gaussian kernels. An initial estimate of their
parameters is computed and iteratively improved using a sparse version of expectation maximization.

(a) m=256 (b) m=1024 (c) m=4096 (d) m=16384 (e) Input image

Figure 3: Our image representation produces high-quality approximations using comparatively few Gaussian terms. The ob-
tained quality continuously improves as more terms are added. In this example, the number of samples xi is held constant, so
that sampling noise becomes visible for large numbers of Gaussians (d).

point representation, which is obtained by sampling a large
number of points proportional to the pixel luminances (we
use n = 4, 000, 000 in our examples, in order for it to be
orders of magnitudes larger than m, the number of patches).
In the following, these will be referred to as xi (i = 1 . . . n).

4.1. Initialization using CCVT

It is important to note that while EM is guaranteed to con-
verge, it will generally only find a locally optimal solution
to Equation (1). Hence it is important to supply it with a
reasonable initial parameter estimate. We experimented with
several strategies for computing such an estimate, and ob-
tained the most reliable results using regular point sets that
adapt to the image intensity.

Such a point set can easily be created by comput-
ing a Capacity-Constrained Voronoi Tesselation (CCVT,
[BSD09]). Following that, the centroid of each Voronoi re-
gion is chosen as the center of a Gaussian in the initial pa-
rameter set. (This bears similarity to the stippling approach
by Weyrich et al. [WPMR09]. Note, however, that in our
approach, stipple point locations are only a starting guess to
guide the optimization of a more complex image approxima-
tion.)

Initially, Gaussian kernels are centered at the stip-
ple points and initialized to an isotropic covariance
Σi = diag(σ2, σ

2), with σ set to the radius of a k-nearest
neighbor query across sample points xi near its center, and

(a) Initial estimate (b) Isotropic (c) Anisotropic

Figure 4: Starting from the initial estimate, our optimization
can compute either isotropic or anisotropic approximations.
Due to the significant qualitative improvement, we always
use anisotropic Gaussians for our surfaces.

with k equal to the capacity of the associated Voronoi region.
This leads to a similar weighted contribution of samples to
each Gaussian’s region.

4.2. Refinement using EM

The EM algorithm improves the initial estimate using a se-
quence of alternating E and M steps; the E step computes the
probabilities of each sample conditioned on the current set of
parameters, whereas the M step maximizes the expected log
likelihood of the parameters subject to the previously com-
puted probabilities.

The standard formulation of EM considers all pairs of
Gaussians and sample points. In our context, this would lead
to prohibitive running times and storage requirements, given
the large numbers of Gaussians and samples involved. In-
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stead, we disregard pairs whose distance exceeds a certain
threshold, on the grounds that our Gaussians are compara-
tively narrow and approach zero for larger distances. This
effectively turns each E and M step into a sparse problem.
By using a kd-tree to look up relevant pairs, we speed up the
EM convergence from O(n2) to O(n log n), if we assume m
and n to be proportional to each other. In addition, we use a
sparse matrix representation to pass probabilities into the M
step, to avoid O(n2) memory usage.

For the number of sample points and Gaussians used in
this paper, each pair of EM-iterations took approximately
17 seconds on a on a 3Ghz Intel Core 2 Duo machine. In
all cases, we ran between 50 and 100 iterations. The afore-
mentioned sparsity optimizations were crucial to make the
fitting process practical, since the O(n2) memory costs of
the unmodified method quickly exhausted our machine’s 8
GiB of memory.

5. Micropatch Design

We wish to compute the shape of a square surface patch
which produces a 2D Gaussian irradiance footprint on a
projection surface when illuminated with incident lighting.
We call such a surface patch a micropatch. In the reflective
case, this will be a minute concave reflector, in the refractive
setting a plano-convex microlens. We start out by determin-
ing the normal field of the desired patch, obtaining the final
shape through subsequent integration. As stated before, we
are confining the description to the refractive case.

Assumptions: We assume the configuration illustrated in
Section 3, showing incident lighting, the milled surface, and
the projection plane. Without loss of generality we describe
the case where the projection surface is a plane parallel to the
micropatch (at z = −D), but the approach is the same given
an appropriate 2D domain on an arbitrary curved projection
surface. We orient our surfaces to have the milled side fac-
ing the projection plane and the flat side facing the light.
For simplicity of exposition, we assume distant illumination
coming from the z+ direction and can therefore ignore the
first refraction (on the un-milled side of the surface). This is
not a restriction of our method, and we can in fact account
for local light sources and refractions at both interfaces (by
solving for the first refraction point as done by Walter et.
al [WZHB09]), with the remaining procedure largely un-
changed.

Approach: To compute the surface normal of the facet we
first need a mapping between points on the micropatch, g,
and the corresponding points, p, on the projection plane. To
enforce that the resulting irradiance profile is a 2D Gaus-
sian, the determinant of the Jacobian of the mapping needs
to be a 2D Gaussian. Given this continuous correspondence,
we analytically solve for the normal direction producing the
required refraction direction at any point of the micropatch,
and we then integrate a discretized version of this normal

(c)

(b)

(a)

Projection Plane

Micropatch
Domain

Incident Light

Gaussian Intensity
Distribution

Normal Field

Micropatch
Domain

Micropatch
Surface

Compute Normals

Integrate Normal Field





D

z = 0

z = −D

Figure 5: We (a) define a bijective mapping between points
in the micropatch domain and points on the projection plane,
such that the irradiance distribution follows a Gaussian pro-
file. We then (b) analytically compute the surface normals
that refract/reflect the light in this way. We integrate this
normal field to arrive at the required micropatch surface (c).

field to obtain the elevated micropatch surface. We illustrate
this process in Figure 5.

5.1. Irradiance Warp

We first find a mapping from any point in the micropatch
domain to a zero-mean unit Gaussian at the projection plane
q. We subsequently explain how we modify this mapping to
account for anisotropy and arbitrary means.

Since our micropatch is square, we parametrize positions
as g(s, t) = [gx, gy, gz]

T where (s, t) ∈ [0, 1]2. We therefore
need a transformation from the uniform square to a standard
2D normal distribution. We could use the Box-Muller trans-
formation [BM58] to map points on the patch to points on
the projection plane. However, we wish this mapping to be
“well behaved” (i.e. continuous, low-distortion, and with-
out singularities) to ensure the resulting normal field is in-
tegrable. Unfortunately, the original Box-Muller transform
does not satisfy these requirements. In its standard form it
transforms points on a disk to points on a Gaussian, and
moreover this mapping contains a singularity in the polar
radius (by mapping the boundary of the disk to the origin,
and the center of the disk to infinity).

To overcome this we use a two-stage transformation.
We first apply Shirley’s low-distortion concentric map-
ping [SC97] to map points (s, t) in the square micropatch
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Figure 6: Our multi-stage process of mapping points in the
micropatch domain (s, t) to points on a Gaussian caustic.

domain to points on a unit disk (u, v). We then apply a mod-
ified Box-Muller transform, which non-uniformly scales the
radius without singularities. Given the point (u, v), we com-
pute the new radius as:

R =

√
−2 log(1− u2 − v2)

u2 + v2 , (2)

and the resulting point on a unit Gaussian is q = [uR, vR]T .
We illustrate this two-stage mapping in Figure 6.

5.1.1. General Gaussians

We now need to transform our unit Gaussian position q to
obey a specific mean µ and covariance matrix Σ. Standard
approaches for doing this are typically only concerned with
properly transforming the distribution, by e.g. interpreting
the coordinates as offsets along the scaled eigenvectors of Σ.
This results in a sequence of scale, rotation and translation
operations. Unfortunately, using this approach can introduce
large distortions in the mapping from patch coordinates to
the final projection plane positions, affecting the integrabil-
ity of the normal field. To avoid this, we eliminate rotation
from our transformation, and instead directly scale the point
q along the directions of the eigenvectors of Σ and then trans-
late the point by the mean µ. This is equivalent to transform-
ing q by the square root of the covariance matrix (as defined
by the matrix logarithm):

p = −
√

Σ q + µ. (3)

We complete our mapping by placing this 2D point onto the
projection plane, which involves appending a z-component
of pz = −D to the above result.

In Equation (3), we actually scale by the negative square
root, which introduces a reflection about the origin prior to
translation. This results in micropatches which always focus
light (between the micropatch and the projection plane) re-
gardless of the size of the Gaussian caustic. This gives our
refractive micropatches more curvature, which is better for
milling.

5.2. Normal Computation

Given this mapping, we need to compute the surface nor-
mal at each location g which would refract light towards p.

g

p

D





θi

θoθb

"n

−"n

︸ ︷︷ ︸
d

Since the refracted direction, sur-
face normal, and incident direc-
tion must lie in the same plane,
we view this as a 2D problem in
this coordinate system, which we
illustrate on the right.

The angle between the outgo-
ing direction and the incident di-
rection is θb = arctan (β) where
β = d

D . By using the fact that
θo = θi − θb and combining with
Snell’s Law, we can solve for the incident angle as

θi =
arctan(ηo sin(θb))

ηo cos(θb)− ηi
, (4)

where ηi and ηo are the incident and outgoing indices of re-
fraction. We obtain the surface normal vector by rotating the
incident vector towards the outgoing vector by θi radians.

5.3. Normal Field Integration

The remaining step follows the height field optimization of
Weyrich et al. [WPMR09]: similarly, we model the micro-
patch as a rectilinear grid of elementary microfacets with
the desired normal orientations, solving a Poisson problem
to lift each facet onto a level that leads to a near-continuous
surface. In contrast to the previous work, we do not optimize
for tileability, as only an individual micropatch is modeled.
Note that we also skip the “shuffling” stage, as, by design,
our mapping already leads to a continuous and optimal facet
layout.

In our experiments, we found that for a wide range of
target Gaussians, the residual of the optimization to be di-
minishingly small, suggesting that the input normal fields are
very close to integrable. In fact, the error is far below the pre-
cision of our manufacturing tools, and subsequent polishing
of our samples leads to smooth patches with near-Gaussian
caustics. We show visualizations of individual micropatches
in Figure 7.

6. Micropatch Assembly

Given a Gaussian image decomposition, we aim at finding an
assembly of micropatches that generate the respective Gaus-
sian caustics, while building a surface that is as continuous

Figure 7: Refractive micropatches producing (left) an
isotropic Gaussian caustic, and (right) a highly anisotropic
Gaussian caustic.
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as possible, in order to facilitate fabrication and to minimize
stray light at boundaries between patches.

A naïve approach would be to pre-generate micropatches
for all Gaussian kernels in the image, and to treat their layout
as an independent problem. Unfortunately, since we account
for local lights and projection distances, the relative position
of each micropatch with respect to its target Gaussian affects
its shape, rendering an independent layout optimization im-
possible. Conversely, including a recomputation of each mi-
cropatch’s shape into a global optimization is costly at best,
and would negatively affect scalability to larger problems.

Instead, we propose an optimization scheme that approx-
imates each patch by a planar proxy geometry that refracts
a central ray toward the center of the target Gaussian. We
found that the orientation of such a proxy is a good ap-
proximation of the overall “tilt” of a Gaussian micropatch
that projects toward the same center. We use this planar ap-
proximation during optimization to gauge compatibility of
neighboring patches, in the sense of Equation (1) in Weyrich
et al. [WPMR09]. This approximation puts us once again
into the same domain as their microfacet optimization, this
time each microfacet acting as the proxy for one micropatch.

Accordingly, we use a similar optimization scheme, start-
ing with a permutation optimization, followed by a Poisson
integration to solve for facet heights. After the last step, we
replace each microfacet by a micropatch that aims at the cor-
responding Gaussian kernel.

6.1. Facet Permutation

Due to the similarity of this pipeline, we only point out dif-
ferences to this previous work, using the same notation as
in Weyrich et al. [WPMR09], referring to the previous paper
for more detail.

Permutation Loop. We, too, deploy simulated annealing
(SA) as a very simple algorithm to optimize the permutation
of facets. Finckh et al. [FDL10] have pointed out the su-
periority of simulated perturbation stochastic approximation
(SPSA) over SA, but we found the simpler SA iteration to
produce satisfactory results nevertheless. The central transi-
tion operation is still the swap of two facets, but in contrast
to the case of BRDF design, where only the net effect of a
microfacet assembly under infinite lighting and viewing is
of interest, a swap alters the orientation of the two facets:
swapping two facets basically corresponds to swapping the
assignment of two kernel centers to their facets, triggering
the recomputation of each facet’s normal.

Energy Function. The previous approach minimizes the
following constraints: facet compatibility C, tileability I, and
the avoidance of valleys V . In our setting, tileability is not
required, and valley avoidance is of reduced value, as the
(refractive) micropatches create slight ridges at all times. In

order to bias the solution toward more low-frequency solu-
tions, however, we add a smoothness term S = Sx + Sy with

Sx = ∑
y

∑
x

∥∥∥∥
dz(x, y)

dx

∥∥∥∥
2

, (5)

with dz defined as in Weyrich et al. [WPMR09], and simi-
larly for Sy. This leads to surfaces that are easier to polish
after the milling process (see Section 7). The final energy
function is then:

E =
C + S

m2 , (6)

with m the total number of micropatches. Figure 8 shows the
energy convergence plots for the samples used in this paper.
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Figure 8: Convergence plots of the energy minimization us-
ing simulated annealing.

6.2. Height Optimization

The height field integration to determine facet placements
in z direction follows the previous approach, except that we
once more ignore tileability. In our setting, however, chang-
ing the height level of a microfacet requires re-aiming it at
its caustic center. We consequently run three iterations of
height optimization and normal recomputation, which typi-
cally leads to reliable convergence after the second iteration.
After this, we replace each facet by the corresponding mi-
cropatch, leading to near-continuous surfaces (see Figure 9).

7. Results

We evaluate our refractive designs both through digital ren-
derings (Figures 10 and 14), as well as by milling physical
samples from PMMA (trade name Plexiglas).

Milling Procedure. We use a Roland DGA EGX-600 En-
graver with a maximum cutting area of 61×40×4.2 cm,
maximum software spatial resolution 0.01 mm, and a re-
peat accuracy of 0.05 mm. The engraver uses a C2-171-
010K Carbide Tipped Engraving Cutter (0.13 mm Tip and
4.36 mm Shank).

For smoothest surface results, we use one draft and one
fine milling pass, each time along the same axis (x or y).
We run the draft mode with a 0.16 mm path spacing, which
cuts off layers of maximally 2 mm thickness per pass. This
helps to prevent damaging the milling bit. This pass leaves
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Lena (refractive) Einstein (refractive)

Venus de Milo (refractive) Great Wave (refractive)

Great Wave (reflective)

Figure 9: Visualizations of the micropatch assemblies used
to produce the results in this paper.

0.2 mm of material for the final pass at 0.02 mm path spac-
ing. For our surfaces (10×10 cm), the draft pass takes be-
tween 12 and 24 hrs, while the fine mode: requires another
24 to 48 hrs, depending on the depth variation of the surface.

Afterwards, we (manually) polish the surface using Novus
Plastic Clean & Shine No. 2, with a final pass with No. 1.
Polishing takes about 1 hr.

Physical Samples. Figure 12 shows two sample datasets
milled according to this procedure. Each of the figures shows
the target image, a decomposition into 1024 Gaussian ker-
nels, a ray-traced simulation of the resulting micropatch as-
sembly, and a photograph of the caustic generated by the real
sample. The samples are 9×9 cm in size, comprising 32×32
micropatches of 2.8 mm edge length. We image the caustics
by using a white-light projector as an approximation of a
distant light source. In the examples, the physical projection
surface was at about 25 cm behind the sample.

As the examples show, our technique translates well to
physical constraints, albeit not without artifacts. Differences
between the simulation and the captured results are due to
a number of error sources, of which the largest is arguably

(a) Input image (b) Decomp. (c) PBRT sim.

Figure 10: Application to an image of Venus de Milo.

the polishing procedure. Great care has to be taken not to
damage the material during manual polishing; especially the
ridges between micropatches are hard to reach and may lead
to spurious caustic patterns as particularly visible in Fig-
ure 12. But also the milling procedure may lead to imperfec-
tions. Systematic error sources, such as stepper quantization,
play a role, and minute shifting of the sample over the long
milling time and local overheating of the material tend to
impair the quality of the results. Given that, we believe that
our results suggest that our approach is robust enough for
physical applications.

7.1. Comparison to Continuous Optimization

Finckh et al. recently presented an algorithm to optimize
a single, continuous surface to exhibit a custom caus-
tic [FDL10]. The authors kindly agreed to run our “Lena”
test specification through their algorithm to allow for a di-
rect comparison to our approach. While their system readily
converged, the result does not span the full contrast range of
the rather complex target image (see Figure 11). The surface
furthermore turned out extremely flat (0.07 mm depth range
over a 100×100 mm area), which made it very susceptible to
stepper quantization of our mill. Figure 11c shows a simula-
tion of the quantization introduced by the mill’s z resolution.
We hence decided to abort the experiment of creating a phys-
ical surface from this data set.

While there may be alternative target specifications
(shorter throw distance or larger projection) that would still
lead to millable surfaces, we cautiously conclude that our
algorithm outperforms Finckh et al.’s global optimization in
terms of physical viability of the results. We hope to be able
to investigate this further to achieve a fair comparison.

8. Discussion and Future Work

Despite other potential applications, our evaluation focuses
on image projections onto a plane, which is arguably the
most convenient domain to gauge the quality of the method’s
output. It, however, invites comparison with a much easier
method for image generation—that of slide projection. In
contrast to slide projection, our method does not modulate,

(a) Surface (b) PBRT sim. (c) Isocontours

Figure 11: We visualize the surface (a) generated using the
method by Finckh et al. [FDL10], as well as a simulation of
the resulting caustic (b). Unfortunately this surface poses a
challenge for physical reproduction due to its small vertical
extent, which results in only a small number of quantized
isocontours (c).
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(a) Input image (b) Gaussian decomposition (c) PBRT Simulation (d) Physical capture

Figure 12: Our method applied to the Lena, Einstein, and Venus images. The Gaussian decomposition is shown in (b) The
resulting surfaces are visualized in Figure 9, and we show a PBRT simulation of the caustic in (c). A photograph of the resulting
caustic from a milled reproduction of the surface is shown in (d).

but only redirect light, avoiding light loss due to absorption.
This is similar in spirit to the light reallocating projection
engine of Hoskinson et al. [HSHF10] and meets the hard
requirement in luminaire design, that all energy should be
used for lighting.

One limitation of our current approach is the restriction to
equal-sized surface patches, a choice made to simplify the
layout of micropatches. This implies roughly equal energy
for all Gaussians (ignoring Fresnel effects), which leads to
the side effect that brighter regions receive more, and higher-
frequency splats than dark regions, which means that bright
regions show more detail than darker regions (visible, for
instance, in the Venus dataset). This effect could be avoided
by allowing for micropatches of different sizes, at the cost
of having to solve the packing problem of seamlessly and
optimally arranging patches of various sizes.

Another limitation is the fact that the generated surface fo-
cuses the caustic on a projection plane with a fixed distance.

As shown in Figure 13 the generated caustic is warped and
distorted when the actual distance deviates from the optimal.

It is further conceivable to extend the caustic genera-
tion from a single plane to a two-plane target specifica-
tion. This would enter the realm of light field construc-
tion and has been demonstrated as an initial prototype by
Fuchs et al. [FRSL08]. Similarly, it is worth investigating
whether the refractive domain allows for lighting-dependent
image formation, as shown by Alexa et al. for diffuse reflec-
tors [AM10].

9. Conclusion

In this paper we proposed a novel system for designing and
manufacturing surfaces that produce desired caustic images
when illuminated by a light source. The system produces
results superior to previous work on goal-based caustic de-
sign and proves to be robust even for complex caustics. Our
nonnegative image decomposition scales well to very large
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Closer than Focusing Plane ←−−→ At Focusing Plane ←−−→ Further than Focusing Plane

Figure 13: Positioning the sample at different distances to the projection plane shows the effective depth of field of the caustic.

(a) Input image (b) Decomposition (c) PBRT simulation (refractive) (d) PBRT simulation (reflective)

Figure 14: Application to the woodcut “The Great Wave off Kanagawa” by Hokusai. We show the input image (a), the Gaussian
decompositions (b), and the resulting caustic images simulated using PBRT for (c) a refractive and (d) reflective surface.

numbers of Gaussian kernels, paving the way for highly in-
tricate caustic designs.

At the same time, we show that our anisotropic Gaussian
primitives are flexible enough to describe a wide range of
natural image content even with only moderate numbers of
kernels, making it possible to fabricate functioning proto-
types with off-the-shelf hardware, as we showed with our
refractive designs.

We hope that our approach of using continuous functions
as discrete building blocks for physical reflectance design
will allow for future developments in creating more complex
lighting and reflectance phenomena.
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