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Figure 1: Starting from noisy, low-resolution frames generated with a path tracer (red borders), our method improves quality
and reduces computational cost by computing spatially and temporally upsampled and denoised frames (green and blue borders)
while properly preserving view-dependent shading effects like the reflections in the picture frame and on the robot.

Abstract
Renderings of animation sequences with physics-based Monte Carlo light transport simulations are exceedingly
costly to generate frame-by-frame, yet much of this computation is highly redundant due to the strong coherence in
space, time and among samples. A promising approach pursued in prior work entails subsampling the sequence in
space, time, and number of samples, followed by image-based spatio-temporal upsampling and denoising.
These methods can provide significant performance gains, though major issues remain: firstly, in a multiple
scattering simulation, the final pixel color is the composite of many different light transport phenomena, and this
conflicting information causes artifacts in image-based methods. Secondly, motion vectors are needed to establish
correspondence between the pixels in different frames, but it is unclear how to obtain them for most kinds of light
paths (e.g. an object seen through a curved glass panel).
To reduce these ambiguities, we propose a general decomposition framework, where the final pixel color is separated
into components corresponding to disjoint subsets of the space of light paths. Each component is accompanied by
motion vectors and other auxiliary features such as reflectance and surface normals. The motion vectors of specular
paths are computed using a temporal extension of manifold exploration and the remaining components use a
specialized variant of optical flow. Our experiments show that this decomposition leads to significant improvements
in three image-based applications: denoising, spatial upsampling, and temporal interpolation.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—I.3.7 [Computer Graphics]: Color, shading, shadowing, and texture—

1 Introduction

The recent widespread adoption of physically based light
transport techniques in the animation and visual effects in-
dustries [KKG∗14] has led to tremendous computational
challenges. Given that hundreds of thousands of frames are
needed for a feature-length film with per-frame computation
times in the order of several hours, rendering costs have be-

come a critical bottleneck, which will continue to increase
as home and cinema displays continue to move to steadily
higher resolutions and frame rates.

At the same time, the underlying computation is character-
ized by a high amount of redundancy due to the coherence
in space, time and among samples. Many acceleration tech-
niques build on this property by using a reduced number of
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samples, followed by image-based post-processing to fill in
missing information. Examples include using fewer samples
per pixel and denoising, leaving out some of the frames and
interpolating them temporally, or rendering a subset of pix-
els and performing spatial upsampling. A key advantage of
image-based methods is that their computational complexity
scales with the number of pixels and not with the scene and
lighting complexity. Consequently, such methods have be-
come a vital part of production rendering pipelines [God14].

Unfortunately, filtering in image space is inherently ill-
posed. Prior works have investigated ways of disambiguating
the problem by exporting auxiliary data from the rendering
process, e.g. motion vectors or depth values. This has been
leveraged for real-time frame interpolation [BMS∗12], spatio-
temporal upsampling [HEMS10], as well as for denoising
path-traced renderings [SD12]. However, when processing
images produced by physically based light transport simula-
tions, filtering remains ill-posed even with such auxiliary data:
the problem is that the color of a pixel becomes a composite
of various light transport effects, including the reflectance
of objects, shadows, and specular reflections and refractions.
These effects generally follow different trajectories over time,
making it impossible to assign a single motion vector per
pixel. Thus, averaging neighboring pixels for denoising or
upsampling inevitably leads to blurring, ghosting and other
undesirable interference.

Contributions. To address these issues, we propose a gen-
eral decomposition framework, where the final pixel color
is separated into components corresponding to disjoint sub-
sets of path space [Vea98]. Such decompositions have been
used for different applications (Section 2); the key innovation
of our approach is that each component is accompanied by
matching motion vectors, which makes it suitable for a range
of useful filtering applications. We also show how to extract
component-specific auxiliary features and propose a novel
way of decomposing reflectance and incident illumination
that significantly improves on prior work.

Computing motion vectors for higher order light paths
requires a new set of tools: for specular paths, we propose a
space-time extension of Manifold Exploration (ME) [JM12].
For the remaining components of the decomposition, we use
an image-based optical flow method, bootstrapped with the
motion vectors of the visible surface points.

We demonstrate the impact of our decomposition and mo-
tion estimation framework in three applications and combi-
nations thereof: denoising, spatial upsampling, and temporal
interpolation. As our framework successfully resolves the
ambiguity problems discussed above, we obtain significant
improvements in image quality compared to baseline meth-
ods using non-decomposed image data. Our method thus
effectively reduces computational costs for producing high
quality renderings of animation sequences.

2 Related Work

Decompositions. Several prior works compute sets of fea-
ture buffers which capture certain aspects of the underlying
light scattering process, for instance to emphasize specu-
lar reflections in the context of non-photorealistic render-
ing [ST90]. The NVIDIA Iray rendering system [NVI12]
uses a regular expression-based decomposition of path space
to emphasize certain aspects of the light transport for artis-
tic control. Dąbała et al. [DKR∗14] decompose images into
many components using Whitted-style ray trees to control
stereoscopic disparity. Our construction is designed for a fun-
damentally different purpose: to capture and decompose ani-
mated multiple scattering effects so that they do not interfere
when frames are further processed using image-based meth-
ods. Related to this idea, Lochmann et al. [LRR∗14] separate
diffuse reflections from specular reflections and refractions
for novel view generation. However, their image space ap-
proach is restricted to a single specular bounce, whereas we
propose a more fine-grained decomposition that considers
arbitrary chains of specular effects.

Specialized decompositions are also used in a variety of
rendering algorithms: a seminal example is the irradiance
caching algorithm of Ward et al. [WRC88], which exploits
the smooth nature of indirect illumination to reconstruct irra-
diance values from a sparse set of samples. An important ob-
servation of the irradiance caching algorithm is that the recon-
struction becomes considerably easier once the effects of tex-
ture variation are separated from the incident irradiance. Irra-
diance factorization is commonly used in global illumination
methods, e.g. for interactive rendering [WKB∗02, SIMP06]
or factorized axis-aligned filtering [MYRD14]. A fundamen-
tal problem of this approach is that it builds upon a linear
shading model, which is invalidated by most realistic shad-
ing models [HMD∗14], spatial anti-aliasing, and distribution
effects such as depth-of-field or motion blur. We propose a
generalized lighting–texture factorization that does not suffer
from this problem; we demonstrate its effectiveness on depth-
of-field and state-of-the-art microfacet reflectance models.

Motion estimation. Rendering engines can typically pro-
vide motion vectors for the scene geometry, which for ex-
ample has been exploited for rendering novel viewpoints
[MMB97]. However, these motion vectors do not capture
apparent motion caused by secondary effects like shadows
or reflections. In the context of filtering for anti-aliasing,
Shinya [Shi95] and Igehy [Ige99] proposed techniques that
can handle specular interactions as well as moving shadows.
For general motion estimation, one could also resort to image-
based techniques like optical flow [BBPW04] to estimate the
apparent motion in the rendered images, but even state-of-the-
art methods do not achieve the accuracy needed for highly
accurate interpolation results. In particular, most methods
only generate a single flow vector per pixel, which cannot
model different motions of overlapping secondary effects.
To address the problem of multiple motion vectors per pixel,
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Lochmann et al. [LRR∗14] compute approximate motion
vectors for diffuse reflections as well as specular reflections
and refractions in image space, which produces significant
artifacts when used for interpolating novel viewpoints, since
the continuous space-time behavior of the scene geometry
is lost when operating in image space. In contrast, our mo-
tion estimation based on Manifold Exploration supports arbi-
trary chains of specular interactions and yields pixel-accurate
motion vectors by performing computations at render time,
where the 3D scene data is still available.

Denoising. There has been a strong renewed interest in
denoising Monte Carlo renderings recently and we refer the
reader to the survey by Zwicker et al. [ZJL∗15] for a complete
overview. Many recent methods resort to generic image space
filters, which have proven to be surprisingly effective [SD12],
especially when performing joint filtering guided by auxiliary
features, e.g. normals and reflectance. While normals capture
geometric detail and reflectance captures the appearance of
materials, they miss the aforementioned secondary effects
like shadows and reflections. To address these limitations,
additional features have been proposed, such as a virtual flash
image to capture reflections [MJL∗13], or a direct visibil-
ity buffer to capture direct shadows [RMZ13]. Instead of
introducing additional features, we process each component
separately while using a component-specific set of auxiliary
features. This not only preserves secondary effects, but also
allows denoising to adapt to the noise characteristics of each
component, leading to significant quality improvements.

Spatial upsampling. To avoid the edge blurring of straight-
forward spatial upsampling techniques like bilinear interpo-
lation, joint upsampling schemes have been proposed that
leverage edge information from a high-resolution guide im-
age [HST13]. In the rendering context, such guide images
are readily obtained from cheap auxiliary features like depth
or normals [HEMS10]. We build on the approach of He et
al. [HST13] and show that upsampling each component inde-
pendently using the respective features as guides improves
results in the presence of complex secondary effects.

Temporal upsampling. There is a large body of work
on image interpolation in video or for virtual view gener-
ation [CW93, ZKU∗04]. More recent work uses motion vec-
tors to drive image warping for upsampling rendered footage
for higher frame rate displays [DER∗10]. However, such
image-based methods are prone to visual artifacts due to
unavoidable errors in image correspondence estimation and
ambiguities caused by the typical restriction to a single mo-
tion vector or depth value per pixel. Frame interpolation can
also be seen as a special case of the more general concept of
leveraging temporal coherence, which has a long history in
rendering [SYM∗11]. In contrast to frame interpolation, these
methods reuse shading information over time to bootstrap the
rendering of frames, as opposed to synthesizing them. This
produces approximate results at interactive rates, but mostly
does not meet the high quality standards of offline rendering.

3 Decomposition

The goal of our decomposition is the separation of several
different scattering effects like chains of specular reflections
and refractions so that they do not interfere in image-based
post-processing methods (denoising, spatial upsampling, and
frame interpolation; see Section 5). To this end, we decom-
pose the rendered image into disjoint path space components
using a tree of regular expressions, where each leaf node
corresponds to an image buffer (Figure 2 and 3).

We use a decomposition based on light path analysis fol-
lowing Veach’s [Vea98] path-space formalism, which models
light transport using integrals over light paths. Each path is
a piecewise linear trajectory between the camera and a light
source, where each vertex represents an intermediate scat-
tering interaction. In order to define our decomposition, we
rely on Heckbert’s [Hec90] regular expression notation to
classify light paths or families of similar light paths. The first
vertex on the camera sensor is labeled E, and each subsequent
scattering vertex encodes the underlying material: diffuse
(D), specular or glossy reflection (R), and specular or glossy
transmission (T). We classify glossy light interactions (e.g.
scattering off rough metal or glass) as R or T if the roughness
is below a threshold (Beckmann roughness α < 0.1 in our
experiments), otherwise we consider them to be diffuse. Fam-
ilies of similar light transport paths can be expressed using a
regular expression syntax, as shown in the legend of Figure 3
and detailed in the supplementary material.

Many different decompositions are theoretically feasible
and it is important to find the right trade-off: decompositions
with few components may not provide much benefit, whereas
very detailed path classifications provide a rich source of in-
formation, but the storage and computational overhead even-
tually becomes prohibitive due to the exponential growth of
classes with increasing path length. Our decomposition is
flexible in this regard and can be customized to focus on the
salient light transport effects in specific scenes. We found the
decomposition shown in Figures 2 and 3 to be adequate for
most cases, but it is possible to enrich it with additional path
types. In the Vase scene (Figure 13), we additionally track
ETTTTD.* paths, i.e. a sequence of four specular refractions
showing the distorted background behind the vase.

Each component is associated with a color buffer, and
the pixel-wise sum of these buffers yields the final image.
The residual component captures all unmatched paths and
usually contains only low-frequency, low-magnitude content.
However, it is still important for the final image synthesis.

Texture/lighting separation. We further decompose, simi-
larly to previous work [WRC88], the individual components
into irradiance and reflectance, to separate texture from light-
ing (Figure 2, columns two and three). This separation is
beneficial for image-based methods as texture and lighting
exhibit fundamentally different characteristics in structure,
noise, and motion. For instance, the motion of the reflectance
buffer is determined by the motion of shaded objects, whereas
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color = reflectance × irradiance
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Figure 2: Decomposition of the Robot scene from Figure 1,
using the regular expression notation illustrated in Figure 3.
The components (from top to bottom) are: direct diffuse (ED),
indirect diffuse (ED.+), specularly reflected (ERD.*), spec-
ularly transmitted (ETTD.*), and a residual ( ) that sub-
sumes all previously unmatched paths. For each component
we extract the color (first column), as well as the reflectance
(second column), and compute the effective irradiance (third
column) as the ratio between them. The final image is ob-
tained by multiplying each component’s irradiance by its
reflectance, and adding up the resulting colors.

the apparent motion of the irradiance is also affected by the
motion of occluders and light sources.

We now detail the texture/lighting separation for the direct
diffuse component, but the approach can be trivially general-
ized to all other components. The direct diffuse component’s
observed color can be expressed as:

ED→color=
∫

S2
ρ(ωi,ωo)Ld(ωi)dω

⊥
i ,

where we integrate the product of the BSDF ρ(ωi,ωo) and the
direct incident radiance Ld(ωi) over the space of projected
solid angles ω

⊥
i for the outgoing direction ωo. As mentioned

previously, we additionally output a reflectance buffer during
rendering which contains a Monte Carlo estimate of

ED→reflectance= ρ(ωo) =
1
π

∫
S2

ρ(ωi,ωo)dω
⊥
i .

In the case of a perfectly diffuse Lambertian surface, ρ(ωo)
is the standard directionless reflectance ρ of the surface, but
this expression nicely generalizes to an “effective reflectance”
for non-Lambertian materials containing glossy transmission
or reflection. Previous works then compute the irradiance as
the integral of all incoming radiance Ld(ωi) and reconstruct

EDED.+

color color

E

ET|ER
refl

ETTD.*

ETT

ERD.*

⏚

Legend
D  diffuse scattering
R  specular reflection
T  specular transmission
.* arbitrary length suffix (≥ 0 vertices)

.+ arbitrary length suffix (≥ 1 vertices)

⏚  captures unmatched energy

⏚

⏚

⏚mvec

color refl mvec color refl mvec

color

Figure 3: A schematic illustration of the decomposition from
Figure 2, showing its tree-like structure. As rays are traced
from the camera/eye (“E”), their contribution and auxiliary
data is stored into one of several image buffers (green).

the component’s color as the product of reflectance and irra-
diance. However, this breaks down whenever the product of
the integrals of reflectance and irradiance over a pixel differs
from the integral of the products, which occurs in the pres-
ence of non-Lambertian surfaces, distribution effects such as
depth-of-field or simple spatial anti-aliasing. Unlike previous
work, we do not directly evaluate the irradiance, but instead
compute an “effective” irradiance as the ratio between the
component’s color value and the effective reflectance,

ED→irradiance=
ED→color

ED→reflectance
.

As very low reflectance values lead to numerical instability
we do not divide by the reflectance when it is below 10−3

and instead directly use the radiance as irradiance, which can
be done as these light paths do not contribute measurably.

This effective irradiance factorization circumvents the lim-
itations of the standard irradiance factorization (see Figure 11
for an illustration) by enforcing a linear shading model on
all pixels. This ensures, by construction, that the compo-
nent’s color can always be reconstructed as the product of
reflectance and effective irradiance.

Features. We also associate each component with a set of
features that can tangibly improve the performance of image-
based methods [HEMS10, SD12]. This data is collected at
the first non-specular vertex of each path and can thus be
easily obtained as a byproduct of path tracing. We extract
reflectance (as mentioned before), normal, object ID, face ID,
texture coordinates, and emitted radiance from visible light
sources (see Figure 9 for examples). The features capture
most of the characteristics of the corresponding components,
including the details of the geometry seen through reflection
or refraction.

We implemented our decomposition in the Mitsuba ren-
derer [Jak10], as detailed in the supplementary material. The
results shown in Section 5 heavily use Mitsuba’s (smooth)
plastic and microfacet-based roughplastic materi-
als, which simulate a coated diffuse layer with a configurable
Fresnel transmission and a nonlinear dependence on albedo.
Similar coupled specular-matte materials are also used in
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ED→reflectance (primary) motion vectors

Figure 4: The diffuse reflectance component and its (for-
ward) motion vectors—which we refer to as primary motion
vectors—color coded as shown in the top right inset.

industrial rendering systems [HMD∗14]. However, their be-
havior cannot be handled with prior albedo-irradiance decom-
positions and requires our effective irradiance factorization.

4 Motion Estimation

Image-based methods such as frame interpolation and tem-
porally stable denoising require accurate motion vectors for
each component of the decomposition. Disregarding the ef-
fects of shading and lighting, it is straightforward to extract
motion vectors of visible surface positions on the scene geom-
etry by mapping the underlying intersections forward in time
and projecting the 3D motion into screen space (Figure 4). In
the remainder we refer to these as primary motion vectors.

4.1 Specular Flow via Temporal Manifold Exploration

Specular motion vectors are significantly more challenging
to extract due to the complex interaction of position, motion,
orientation and curvature of the involved objects. In the fol-
lowing we show how to compute highly accurate specular
motion vectors (“specular flow”) directly within the renderer.

We propose a generalized version of the manifold explo-
ration (ME) [JM12] technique to compute the apparent mo-
tion of objects observed through a sequence of specular re-
flection or refractions. ME is based on the observation that
light, which undergoes specular scattering events, follows tra-
jectories that lie on a lower-dimensional manifold of transport
paths akin to configuration spaces of a mechanical system.
By finding local parameterizations of this manifold, it is pos-
sible to explore it via a sequence of one or more local steps.
In the original method, this was used to answer questions
like: “if a 3D point seen through a static curved glass object
moves, how does the corresponding observed point on the
surface of the glass object shift?”. By a temporal extension of
the underlying manifolds, we can answer the same question
for specular motion from frame to frame in general dynamic
scenes. Instead of directly solving for the image-space mo-
tion, we solve a slightly more general problem: given a light
path with vertices x1, . . . ,xN at time t, we evolve its config-
uration up to the next frame t+1. We can then project the
differences in the two configurations onto the image plane
and obtain the image-space motion vectors.

We now summarize the key ideas of our extension here

Figure 5: A moving non-specular object observed through a
pair of moving specular refractions. To compute the effective
motion of the object in the rendered image, we fix vertices x1
and x4 of the light path and perform an implicit solve for the
path configuration at the next frame.

and refer the reader to Jakob’s thesis [Jak13] for a detailed
explanation of the original technique for static scenes.

Vertex x1 is assumed to be a position on the aperture of the
camera, and xn (n≤ N, where N denotes the total number of
path vertices) is an interaction with a non-specular material
that is observed through a chain of specular interactions. We
are only interested in the behavior up to the first non-specular
interaction or light source xn (e.g. x5 in Figure 5) and ignore
any subsequent vertices xn+1, . . . ,xN . Each specular interac-
tion between x1 and xn can be interpreted as a constraint
that requires the incident and outgoing directions to satisfy a
geometric relationship: in the case of a mirror, it requires the
inclinations of the incident and outgoing directions to match.
These constraints effectively collapse the set of contributing
light paths to a lower-dimensional manifold, which can be
explored using a Newton-like root-finder involving derivative
computation and projection steps, which we describe in turn.

Our approach assumes the rendering system has the ca-
pability of querying the position of the path vertices over
time while keeping them rigidly attached to the underly-
ing camera, shape, or light source. Hence, given the initial
vertices x1(t), . . . ,xn(t), we can find their future positions
x1(t+1), . . . ,xn(t+1). Generally, this new path is not in a
valid configuration anymore, i.e. it does not satisfy the laws
of specular reflection or refraction everywhere. We therefore
derive a correction term that attempts to bring the vertices
back into a valid configuration by analyzing the geometric
properties of a local first-order approximation of the manifold
of valid light paths.

We assume that each vertex xi(t) has linearly independent
tangent vectors ∂uxi(t) and ∂vxi(t), and that its position can
be differentiated with respect to time, yielding a 3D motion
vector ∂txi(t). We use these three quantities to define a Taylor
approximation x̂i centered around the current vertex position
xi(t) which parameterizes the vertex on a small neighborhood
in space (parameters u,v) and time (parameter t):

x̂i(u,v, t) = xi +u ·∂uxi + v ·∂vxi + t ·∂txi (1)

Our first change to the original ME derivation is the addition
of the last temporal term, which introduces extra derivative
terms that propagate through the subsequent steps. For brevity,
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we now assume that all accented quantities are parameterized
by (u,v, t). Similarly to the above equation, we define an
interpolated shading normal n̂i by replacing all occurrences
of xi by ni and normalizing the result of the interpolation.
Finally, we complete n̂i to an orthonormal three-dimensional
frame {ŝi, t̂i, n̂i}, where the ŝi is aligned with ∂uxi and where
t̂i = n̂i× ŝi.

Suppose now that a specular reflection or refraction with a
relative index of refraction η takes place at vertex xi (η = 1 in
the case of reflection). If the vertex is in a valid specular con-
figuration, its generalized half-direction vector [WMLT07]

ĥi =
x̂i−1− x̂i

‖x̂i−1− x̂i‖
+η

x̂i+1− x̂i

‖x̂i+1− x̂i‖
(2)

is collinear with the normal n̂i. An equivalent way of stating
this property is that the projection of ĥi onto the interpolated
coordinate frame

ĉi =

(
ĥi · ŝi
ĥi · t̂i

)
(3)

vanishes, i.e. ĉi = 0. A subpath x1, . . . ,xn with endpoints x1
and xn must then satisfy n−2 such constraints (one for each
specular scattering event), which we collect and jointly write
as ĉ(u1,v1, . . . ,un,vn, t) = 0, where ĉ : R2n+1→R2(n−2).
This equation describes a first-order approximation of an
implicitly defined 5-dimensional manifold over light paths
embedded in a (2n+1)-dimensional space. Of particular inter-
est are the tangent vectors of this high-dimensional manifold,
which express how infinitesimal movements of one vertex
affect the rest of the specular chain; these can be obtained via
a simple application of the implicit function theorem, which
we discuss next.

To concretely reason about tangent vectors, we must first
choose coordinates in which they should be expressed. In this
context, the most useful coordinates parameterize the inter-
mediate vertex positions in terms of the endpoint positions
u1,v1,un,vn (4 dimensions) and time t (1 dimension). Let
Jĉ be the (square) Jacobian matrix of ĉ with respect to the
remaining coordinates (i.e. the intermediate vertex positions):

Jĉ =

(
∂ĉ(0)
∂u2

,
∂ĉ(0)
∂v2

, . . . ,
∂ĉ(0)
∂un−1

,
∂ĉ(0)
∂vn−1

)
. (4)

Then the desired tangent vectors are given by the columns of

T =−J−1
ĉ

(
∂ĉ(0)
∂u1

,
∂ĉ(0)
∂v1

,
∂ĉ(0)
∂un

,
∂ĉ(0)
∂vn

,
∂ĉ(0)

∂t

)
. (5)

The involved derivatives are simple to evaluate using auto-
matic differentiation. We use a dense LU factorization for
the linear system solve in Eq. (5), which could be optimized
to take advantage of the block tridiagonal structure of Jĉ for
large n. We did not find this necessary as n≤ 8 in all of our
experiments (n = 8 was required to track quadruple refraction
paths in Figure 13). Note that n is only related to the depth
of the decomposition, not the total path depth used in the
scattering simulation.

ERD.*→color specular motion vectors

Figure 6: Specular reflection component and matching mo-
tion vectors found using Manifold Exploration. White pixels
mark light paths which cease to exist or cannot be tracked
to the next frame. When interpolating frames, we flag and re-
compute these pixels using a second sparse rendering phase.

In principle, we could now use the entries of the matrix T
to estimate motion vectors for specular paths: for instance,
the fifth column specifies how the path vertices should be per-
turbed to maintain a valid configuration for an infinitesimal
change in time. However, specular flow is highly nonlin-
ear, and this extrapolation is not accurate enough even on
a frame-to-frame basis. ME uses a sequence of alternating
extrapolation and projection steps to accurately solve for path
configurations; the projection step effectively re-traces the
linearly extrapolated path starting from the camera x1, which
either fails or produces a corrected light path that satisfies all
specular constraints. A simple repetition of these two steps
leads to a Newton-like method with quadratic convergence
close to the solution. As with standard Newton methods, it
is helpful to use an adaptive step size criterion to ensure that
the linearity assumption is sufficiently satisfied (please refer
to Jakob and Marschner [JM12] for details). On a typical
frame of our Robot scene, the average number of spatial and
temporal iterations were 3.72 and 1.37, respectively.

In our case we pursue two simultaneous goals that are
different from the original method: we want to evolve a light
path x1, . . . ,xn from time t to t+1 such that the endpoints
x1 and xn remain firmly attached to the underlying objects.
We achieve this using two nested solves: the inner loop is a
standard (i.e. non-temporal) manifold walk invoked at time
t < t′ ≤ t+1 to ensure that the endpoint vertices are at their
target positions x1(t

′) and xn(t′). The outer loop is a temporal
manifold walk, which advances the path forward in time and
ensures that it remains in a valid configuration (though the
endpoints may shift). Combined, they lead to a final set of
positions at time t+1 which allows us to evaluate the change
in position of the first vertex as seen from the camera, i.e.
x2(t+1)− x2(t), and project it into image space to obtain
the final motion vector vt(p), where p ∈ Ω denotes a pixel
position in the 2D image domain Ω.

The entire process is fast compared to Monte Carlo render-
ing, since only a few rays need to be traced per pixel (Table 1).
Our approach results in highly accurate motion vectors with
reprojection errors on the order of machine precision when-
ever a light path could be successfully tracked from one frame
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keyframe 1 warped keyframe 2 optical flow

Figure 7: Optical flow-based motion estimation for the irra-
diance component (left). Using the primary motion vectors
(Figure 4), we perform a motion compensation by warping
the second keyframe (middle) where white pixels mark oc-
clusions. The resulting flow (right) is added to the primary
motion vectors to obtain the final motion estimate.

to the other. We flag light paths that could not be tracked or
that do not exist in one of the frames (Figure 6), so that
image-based methods can treat them accordingly, e.g. by re-
computing the associated pixels in a final sparse rendering
pass following frame interpolation.

4.2 Image-based Irradiance and Residual Flow

Motion in the irradiance components is the result of time
variation in a complex multiple scattering process. For the
residual component, motion vectors are equally challenging
to compute within the renderer due to the large variety of av-
eraged path space components. For both of these components
we therefore resort to image-based optical flow to estimate
motion vectors. We base our approach on the well-established
method of Brox et al. [BBPW04] and propose several exten-
sions to improve accuracy in our application scenario.

Most importantly, we need to handle large displacements
due to fast object or camera motion, which are known to
degrade the robustness of optical flow estimation. To this end
we leverage the primary flow to bootstrap the flow compu-
tation via a motion compensation, as illustrated in Figure 7.
Here, the primary motion vectors are used to warp the sec-
ond frame towards the first frame by performing a backward
lookup, which compensates for camera and object motion.
The remaining motion is due to secondary effects such as
moving shadows, and can be robustly estimated using optical
flow. Adding these motion vectors to the primary motion vec-
tors then gives the final motion vectors between the frames.

We also detect occlusions by a forward-backward consis-
tency check that tests whether by following the (forward)
motion vector and its corresponding backward motion vector
one ends more than 0.1 pixels away from the original position.
Here, we cannot hope to find a matching pixel and disable
the data matching term in the optical flow solver, resulting in
a smooth filling-in of motion vectors due to the smoothness
assumptions imposed in the optical flow formulation. See the
supplementary material for more details.

For the irradiance components, we perform the optical flow
computation in the logarithmic domain, where shadows at
different brightness levels can be better distinguished.

Figure 8: We detect silhouettes in the scene and mark them
to be ignored by image-based methods since they contain
competing motion vectors.

4.3 Silhouette and Occlusion Handling

Silhouette pixels capture light from both foreground and back-
ground which makes it impossible to define a single unique
motion vector there. We hence detect silhouettes (Figure 8)
and ignore the corresponding motion vectors for image-based
methods, i.e. we treat them like untracked motion vectors
in the specular flow (Figure 6). We find silhouettes as sign
differences in the dot product of adjacent faces with the di-
rection to the camera and rasterize these as 3D lines. This is
very efficient, taking 6s at 1280x720 pixels.

A similar reasoning applies to occlusions, where image-
space motion vectors would describe the motion of the oc-
cluded background points, which leads to artifacts when used
for image-based methods. We hence detect occlusions as
mentioned before and also ignore motion vectors there.

5 Applications

We now show how our decomposition and motion vectors can
benefit different image-based post-processing methods: de-
noising of low sample-count renderings (Section 5.1), spatial
upsampling to a higher resolution (Section 5.2), and tem-
poral upsampling, i.e. interpolation of in-between frames
(Section 5.3) to increase the frame rate.

5.1 Denoising

For denoising we build upon the joint NL-means filtering
approach of Rousselle et al. [RMZ13], which computes the
denoised value û(p) of a pixel p as a weighted average over a
square neighborhood N (p) : û(p) = ∑q∈N (p) w(p,q)u(q),
where w(p,q) = min(wc(p,q),w f (p,q)) combines a color
weight wc computed on the color buffer and a feature weight
w f . If multiple features are available (as in our case), then w f
is the minimum of the feature weights. A neighboring pixel
q is therefore given a high weight only if it is similar to p
according to the color and each feature.

We can directly leverage our decomposition for a joint
NL-Means denoising since we render, for each component,
the final color, as well as the reflectance, normal, and object
ID features. We separately denoise the effective irradiance,
computed as described in Section 3, of each component. The

c© 2015 The Author(s)
Computer Graphics Forum c© 2015 The Eurographics Association and John Wiley & Sons Ltd.



H. Zimmer et al. / Path-space Motion Estimation and Decomposition for Robust Animation Filtering

input (512 spp) color only decomposition decomp. & features ground truth (16k spp)

7.7·10−3 / 9.4·10−3 1.9·10−3 / 7.3·10−3 1.9·10−3 / 4.5·10−3 0.78·10−3 / 2.2·10−3

ED.+→color ED→reflectance ED→normal ERD.*→color ERD→reflectance ERD→normal

Figure 9: Denoising is significantly more robust when leveraging our decomposition. Top row: NL-Means filtering the final
color (“color only”) yields a smooth but blurry output; NL-Means filtering each component separately (“decomposition”)
yields sharper reflections, but low-constrast texture details, such as the text printed on the torso, are still problematic; joint
NL-Means filtering of each component guided by our auxiliary features (“decomp. & features”) robustly recovers fine details in
the scene and yields a result close to the ground truth. We give the relative MSE of each image for the full frame (first value)
and the crop shown (second value). Second row: noisy data and corresponding reflectance and normal buffers for the indirect
diffuse component (left three images) and the specular reflection component (right tree images), showing how the decomposition
succeeds in capturing the distinct noise characteristic and spatial structure of the previously composited shading effects.

color weight wc is computed on the irradiance buffer, and the
feature weight w f is computed on the normal and object ID
buffers. Once the irradiance is denoised, we multiply back the
corresponding reflectance buffer to obtain the denoised com-
ponent color. All denoised components are finally summed
up to yield the denoised rendering.

In the work of Rousselle et al., a filter bank of three joint
NL-Means filters was computed and combined on a per-pixel
basis. One filter was more sensitive to color differences, one
more sensitive to feature differences, and a third one more
balanced. In our implementation, we opted to use a single
balanced filter. Combined with our decomposition, we found
this simplified denoising scheme offered a better trade-off
between quality and complexity (see Figures 9 and 10 for re-
sults using both our implementation and the original scheme
proposed by Rousselle et al.).

Temporal denoising. Residual low-frequency noise can
lead to highly noticeable large-scale flickering in denoised
animation sequences. This problem can be alleviated by a
spatio-temporal filtering [HEMS10]. Extending a joint NL-
Means filter to the spatio-temporal domain is easily achieved
by augmenting the filtering window to include data from
temporally adjacent frames [BCM08]. However, one needs
to account for camera and scene motion to be able to lever-
age the coherence from frame to frame in an optimal way.
To this end, we warp every component of adjacent frames,
as well as the corresponding feature buffers, using the com-
puted per-component motion vectors, which aligns them to
the current frame. This works in the same manner as for
the motion compensation described in Section 4.2. When
denoising the irradiance, we use the computed geometry mo-

tion vectors of the corresponding component (ED.*, ERD.*,
or ETTD.*), where the motion of moving shadows is not
captured over time. However, the robust NL-Means weights
ensure that shadows are not excessively blurred despite the
misalignment. From the denoised irradiance components we
can then compute motion vectors, as described in Section 4.2,
to be used in other applications, such as frame interpolation.
The results of spatio-temporal filtering across 3 frames are
included in our supplementary video.

Results. In Figure 9 we compare different denoising re-
sults leveraging progressively more information from our
decomposition. Using our decomposition already recovers
much more details compared to denoising the final colors
only. When adding the features for a joint NL-Means filter-
ing, we achieve denoising results that are visually very close
to a high sample-count ground truth rendering with a low
relative mean-square error (MSE). See our supplementary
material for the parameters used for the joint NL-Means filter,
results at lower sampling rates, and an equal error rendering
without denoising.

We also applied the original denoising algorithm proposed
by Rousselle et al. [RMZ13] on our Robot scene, to illustrate
how an advanced denoising scheme can benefit from our
decomposition. The results are given in Figure 10 and show a
significant improvement. Given that the choice of denoising
method is orthogonal to our decomposition, we would expect
other methods to benefit similarly.

Spatial anti-aliasing and distribution effects. Our effec-
tive irradiance factorization can be used in cases where
the standard irradiance factorization is invalid, as explained
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RMZ13 RMZ13 + decomp.

1.2·10−3 0.75·10−3

Figure 10: Denoising the robot scene using the original
method proposed by Rousselle et al. [RMZ13] (left image),
and the same method applied on top of our decomposition
(right image). Even with this more advanced method, our
decomposition brings a significant improvement, both quali-
tatively and quantitatively, as measured by the relative MSE
(which we computed on the full frame).

input (512 spp) irradiance eff. irradiance ground truth

5.6·10−3 9.9·10−3 0.90·10−3

Figure 11: Denoising of the Robot scene using irradiance
factorization with added depth-of-field. Although this crop
shows only diffuse materials, the linear shading assumption
at the core of the irradiance factorization is invalidated by
the coupling between irradiance and reflectance induced by
the depth-of-field effect (and to a lesser extent the spatial
anti-aliasing). Denoising using standard irradiance factor-
ization (second column) actually degrades the MSE because
of the excessive bias (most noticeable in the shrunken region
pointed by the arrow). Our effective irradiance factorization
(third column) does not suffer from such issues.

in Section 3. This notably occurs when using spatial anti-
aliasing and in the presence of distribution effects such as
depth-of-field or motion blur. All results presented use spatial
anti-aliasing, and, in Figure 11, we illustrate the output of our
denoising technique when adding depth-of-field to the Robot
scene and compare it to the result obtained using standard
irradiance factorization. Note that in this case, the features
also exhibit a noticeable amount of noise which requires to
prefilter them as proposed in [RMZ13].

5.2 Upsampling

Dramatic increases in the pixel count of cinema and home
TV have made it prohibitively expensive to render animations
for these new formats. This can be alleviated by rendering at
a lower resolution, followed by an upsampling step that pro-
duces the desired output resolution. Similarly to the improve-
ments we achieve for denoising, upsampling each component
separately yields tangibly better results, as multiple shading

input color only decomp. ground truth

8.2·10−3 3.4·10−3

Figure 12: Upsampling a 640×360 rendering at 512 spp
(“input”) to 1280×720 pixels. Upsampling of the final pixel
color guided by the features of the diffuse component (“color
only”) blurs out secondary effects, such as the refractions in
the sphere and the reflections on the robot. We can robustly re-
construct the reflections and refractions by applying the same
upsampling scheme on top of our decomposition (“decomp.”),
yielding a much lower relative MSE (which we computed on
the full frame). The ground truth shown is the denoised full
resolution rendering at 512 spp.

contributions that would normally interfere in the upsampling
process can be disambiguated. Additionally we can leverage
auxiliary features that can be cheaply computed at the high
target resolution to guide the upsampling [HEMS10].

Our upsampling application is based on the guided image
filter [HST13]. We use a joint upsampling scheme, where the
color is upsampled using the features (reflectance, normal
and emitted radiance) as a guide, and each component is
upsampled individually. We directly render the image at the
target high resolution but with correspondingly fewer samples.
For all examples, we rendered at 1/4 of the samples. We then
subsample using a 2×2 box filter, which results in a low-
resolution image with reduced noise. The subsampled images
are denoised, and then upsampled back to the full resolution.
This reduces the sampling rate by a factor of 4, while keeping
the same signal-to-noise ratio in the low-resolution image.

Due to its unconstrained optimization, the guided image
filter upsampling can produce negative pixel values, partic-
ularly along strong edges. Pixels with negative values are
flagged to be re-rendered with a higher sampling count and
denoised at the full resolution. In practice, the re-rendering
rate is very low. For the Robot scene it varies between 0.14%
and 0.28% per frame, with an average of 0.20%.

Results. In Figure 12, we show that directly upsampling the
final colors loses a lot of detail, despite being a common ap-
proach [SGNS07]. While it correctly reconstructs the diffuse
shading, it fails for secondary effects, such as reflections and
refractions. In contrast, the same upsampling scheme applied
on each component of our decomposition and guided by the
features yields a significantly improved result, with correct
reflections and refractions, and a drastically reduced relative
MSE. Please see the supplementary video for upsampling
results on the full sequence.
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color only ours ground truth

Robot 7.3·10−3 1.7·10−3

Vase 1.1·10−1 0.1·10−1

Figure 13: Interpolation with challenging specular effects.
The crop of the Robot scene (top) shows the handling of
reflections (ERD.*) whereas the Vase scene (bottom) show-
cases a highly complicated fourfold specular transmission
(ETTTTD.*). The color only baseline method (second col-
umn) interpolates the final colors using the primary motion
vectors, yielding strong artifacts and a high relative MSE
(which we compute for the full frame). Our approach of inter-
polating each component separately using the corresponding
motion vectors significantly improves results. We interpolated
3 in-between frames for both scenes.

5.3 Frame Interpolation

Frame interpolation proceeds by projecting pixels rendered at
sparse keyframes to in-between frames using corresponding
motion vectors. To improve results one can use motion vec-
tors computed forward and backward in time, and average the
contributions from the two neighboring keyframes, weighted
by their distance to the interpolated frame [YTS∗11].

In our decomposition framework, we interpolate each com-
ponent separately using the corresponding motion vectors.
This remedies ghosting artifacts that appear in the the pres-
ence of complex secondary effects such as reflections and
refractions where a single pixel receives contributions from
various sources that might all undergo different motions.

As we compute specular motion vectors at the final frame
rate, they are defined between subsequent frames. For in-
terpolation, we however need motion vectors defined be-
tween keyframes and the current in-between frame, which
we achieve by concatenating the motion vectors. The same
applies to the primary motion vectors used for the diffuse
reflectance component. For the irradiance and residual com-
ponents, we compute motion vectors between the keyframes
using optical flow (Section 4.2) and thus just scale these
motion vectors w.r.t. the position of the in-between frame.

Re-rendering. There are several reasons why it can be nec-
essary to re-render some pixels in the interpolated frames in
a second sparse render pass: Some specular paths cease to
exist or cannot be tracked over time, which leads to unknown
pixels in the specular motion vectors (Section 4.1). We also

color only: 6.2·10−2 ours: 1.4·10−2 ground truth

Figure 14: Interpolation with challenging moving shadows.
The baseline method (color only) leaves halos whereas our
approach of interpolating the irradiance and residual com-
ponents separately using the estimated motion vectors (Sec-
tion 4.2) significantly reduces these artifacts and lowers the
relative MSE (computed on the full frame).

ignore motion vectors of silhouette pixels as they may cap-
ture objects with conflicting motion. Such undefined motion
vectors result in holes in the interpolated frame, which need
to be filled by re-rendering. Holes are also caused by pixels
that are occluded in both keyframes, but become visible in
the in-between frames. Finally, if the illumination changes
noticeably, a seam can occur between disocclusions where
only a single keyframe contributes and the neighboring re-
gions where contributions from two keyframes are averaged,
making it necessary to also re-render the disoccluded region
in such cases. For the Robot sequence, we re-render between
8% and 33% of pixels, with an average of 20%.

Results. In Figure 13 we show that using our decompo-
sitions and the corresponding motion vectors resolves the
ghosting at specular effects that occur when interpolating the
final colors only using the primary motion vectors. Figure 14
shows results for a scene with complicated moving shadows.
These are captured in the diffuse irradiance and the residual
components and we estimate their motion vectors using op-
tical flow (Section 4.2). Consequently we cannot match the
accuracy of the specular motion vectors obtained using Mani-
fold Exploration, but still obtain visually appealing results.

The supplementary video shows interpolation results on
full sequences where the ghosting artifacts result in strongly
visible, temporal flickering.

Glossy objects. In the video we show additional scenes, in-
cluding one featuring a highly glossy object (Glossy Sphere).
Here, we compute specular motion vectors the same way as
for ideally smooth ones, i.e. we pretend that they are smooth
when running the Manifold Exploration. This is based on an
empirical observation that the effective motion in the smooth
and glossy case is almost identical, even though the appear-
ance in the rendering may significantly deviate. The results
in the video validate that this approximation is sufficiently
accurate to obtain favorable interpolation results.

Motion blur. We can also use the computed motion vectors
to add motion blur as a post-process by integrating (splatting)
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no motion blur added motion blur added motion blur
(half exposure) (full exposure)

Figure 15: We can use our per-component motion vectors to
simulate different amounts of motion blur as a post-process.

the pixel colors of each component along the motion vec-
tors [CW93, BE01]. As shown in Figure 15, this not only
produces realistic motion blur, but also allows us to easily
control the amount of blur, i.e. the virtual exposure time, after
rendering. We fill pixels with undefined specular motion vec-
tors (Figure 6) using standard image inpainting [BSCB00],
which we found sufficient to obtain visually plausible results.

5.4 Combination

To combine the previously described image-based meth-
ods into a single pipeline we first produce high resolution
keyframes by combining denoising and upsampling (Sec-
tion 5.1 and 5.2). Then we interpolate in-between frames,
followed by re-rendering (Section 5.3). Corresponding re-
sults are shown in Figure 1 and in the supplementary video.

6 Performance

Table 1 shows the speedups achieved by several combinations
of our post-processing methods on the Robot scene, running a
CPU implementation on a cluster. Storing the decomposition
incurs a memory overhead proportional to its granularity. The
data is stored in compressed multi-channel EXRs, leveraging
that some components have many zero pixels. The frame
shown in Figure 2 is 29MB in total, where the final pixel
color accounts for 3.7MB.

7 Limitations

Our decomposition cannot fully disambiguate motion in the
case of silhouette pixels overlapping regions with conflict-
ing motions, which we handle by detecting and re-rendering
these pixels. However, this heuristic is very conservative and
could possibly be improved, leading to further performance
gains. Similarly, our heuristic for handling occlusions is also
very conservative, and it may be possible to use more ad-
vanced blending techniques, e.g., Poisson blending [PGB03]
to handle occlusion seams with less re-rendering.

We also envision an automatic method to determine the
components that are needed to best represent a given scene,
e.g. by analyzing the materials. This could be supported by a
code generation tool that automatically instruments the path
tracing integrator for a given decomposition.

Table 1: Average computation times per input frame (in
core minutes) on the Robot scene (1280×720 pixels). The
noisy baseline render without extracting our decomposition
(Base) used 512 spp, whereas an (almost) noise-free ground
truth render (GT) required 16k spp. The last three columns
contrast the gain in resolution (due to upsampling or in-
terpolation) vs. the computational overhead compared to
the baseline, and give the relative cost as the ratio between
the two. Clearly, as we combine more post-processing steps
(Denoising, Upsampling, Interpolation) we reduce the rela-
tive cost. Note that the Upsample and Interpolate columns
also include the re-rendering and denoising of missing pixels,
which for the interpolation make up for 90% of the time.

Method Render Denoise Upsample Interpolate Resolution Overhead Rel. Cost

Base 178.0 – – – – – –

GT 5696.0 – – – 1× 32.0× 32
D 208.2 5.5 – – 1× 1.2× 1.2
DI 210.8 5.4 – 172.1 4× 2.2× 0.55
DU 61.7 1.5 12.2 – 4× 1.7× 0.43
DUI 64.3 1.4 11.1 131.4 16× 4.7× 0.29

Finally, we did not investigate volumetric effects in this
paper. Recent efforts in the movie industry [Kai12] involve
the use of “deep” buffers to capture and decompose the effects
of volumetric light transport for the purpose of compositing.
Extending our system with additional “deep” components
would be an interesting avenue of future work.

8 Conclusions

We have presented a general and flexible decomposition
framework for path tracing-based rendering, which resolves
ambiguities that have so far hampered the adoption of image-
based post-processing methods in scenarios with high quality
requirements. We demonstrated the benefits of our approach
for denoising, spatial upsampling and frame interpolation.

Our decomposition leverages two key contributions. First,
we provide motion vectors for all components of the decom-
position, including specular paths for which we derived a
temporal extension of manifold exploration, and the irradi-
ance and residual components for which we used image-based
optical flow bootstrapped with the motion of visible objects.
Second, we proposed a simple modification of irradiance
factorization that can, once combined with our decomposi-
tion, handle general BRDFs, including specular surfaces, and
challenging distribution effects such as depth-of-field.
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